
Synthesis of Equivalent
Method Calls in Guava

Andrea Mattavelli and Alberto Goffi
University of Lugano, Switzerland

Alessandra Gorla
IMDEA Software Institute, Spain

Equivalence in Software

MultiMap m = new MultiMap();

//…
//check if element is already in map
if (m.contains(x))
 if (m.elementSet().contains(x))
 if (m.count(x) > 0)

Google Guava

//…
//add key-value in the map
m.put(k, v)
m.putAll(k, Arrays.asList(v))
m.entries().put(k, v)

Equivalence in Software

MultiMap m = new MultiMap();

//…
//check if element is already in map
if (m.contains(x))
if (m.elementSet().contains(x))
if (m.count(x) > 0)

Google Guava

//…
//add key-value in the map
m.put(k, v)
m.putAll(k, Arrays.asList(v))

Exploiting Redundancy

Security

Test oracles

Automatic repair

pop()

Execution scenarios

int el = s.peek();
int index = s.size();
index = index - 1;
s.remove(index);
return el;

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Stack

Search-based Synthesis of Equivalences

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Ti
m
eo
ut
!

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Ti
m
eo
ut
!

Efficiency of Search-based Synthesis

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

Time (seconds)
0 10 20 30 40 50 60

6

7

8

6

6

15

11

18

15

20

16

16

20

18

Synthesis Counterexample

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.00

1.00

1.00

1.00

1.00

0.84

Recall

 90.5%

(on 30 runs)

Effectiveness of Search-based Synthesis

Search-Based Synthesis of Equivalent Method Sequences

Alberto Goffi

†
, Alessandra Gorla

‡
, Andrea Mattavelli

†
, Mauro Pezzè

†⇤
, and Paolo Tonella

§

†
University of Lugano

Switzerland

{goffia, mattavea, pezzem}@usi.ch

‡
Saarland University

Germany

gorla@st.cs.uni-saarland.de

§

Fondazione Bruno Kessler

Italy

tonella@fbk.eu

ABSTRACT
Software components are usually redundant, since their in-
terface o↵ers di↵erent operations that are equivalent in their
functional behavior. Several reliability techniques exploit
this redundancy to either detect or tolerate faults in soft-
ware. Metamorphic testing, for instance, executes pairs of
sequences of operations that are expected to produce equiv-
alent results, and identifies faults in case of mismatching
outcomes. Some popular fault tolerance and self-healing
techniques execute redundant operations in an attempt to
avoid failures at runtime. The common assumption of these
techniques, though, is that such redundancy is known a priori.
This means that the set of operations that are supposed to
be equivalent in a given component should be available in
the specifications. Unfortunately, inferring this information
manually can be expensive and error prone.

This paper proposes a search-based technique to synthesize
sequences of method invocations that are equivalent to a
target method within a finite set of execution scenarios.
The experimental results obtained on 47 methods from 7
classes show that the proposed approach correctly identifies
equivalent method sequences in the majority of the cases
where redundancy was known to exist, with very few false
positives.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms
Measurement, Verification

Keywords
Redundancy, equivalent method sequences, search-based soft-
ware engineering, specification mining

⇤Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

1. INTRODUCTION
The presence of equivalent code fragments, for example

methods or method sequences, make modern software sys-
tems redundant. Informally, two methods are equivalent
if they produce indistinguishable results when called with
proper parameters. This is the case, for instance, of methods
put() and putAll() in the Google Guava class AbstractMul-

timap.1 They produce indistinguishable results when putAll()

is called with a collection containing the single value passed
to put(). Beside interchangeable methods, as in the previous
example, it is possible to obtain equivalent executions by
combining several method invocations. For example, method
pop() of class Stack in the Java standard library is equivalent
to the method sequence remove(size()-1). Indeed, remov-
ing the element on top of the stack (pop()) leads to the
same result as removing the element in the last position
(remove(size()-1)).

This form of redundancy should not be confused with
what are usually referred to as code clones. Code clones
are typically the result of bad design and implementation
practices, such as copy and paste, and indicate the need
of code refactoring [16]. Instead, the redundancy described
above is the result of good design practice, as it aims to
o↵er a richer API to client components and to increase code
reusability.

While in some cases redundancy exists only at the interface
level, it often extends to the underlying code. For example,
the code of methods pop and remove is substantially di↵erent,
as shown in Figure 1. The di↵erence in the implementation
extends even to removeElementAt, which is invoked by pop,
since it does not use the code of remove. We omit the code
of removeElementAt for lack of space.
Recent studies indicate that redundancy is widely spread

in software systems. Jiang and Su studied the Linux kernel
and found more than 600,000 semantically equivalent code
fragments [22], while Carzaniga et al. found more than 4,000
equivalent methods or method sequences in Java applications
and libraries of non trivial size and complexity, including
Apache Ant, Google Guava, Joda-Time and Eclipse SWT [5].

Equivalent method sequences find many useful applications,
from the automatic generation of test inputs [8], to the design
of self-healing systems [5, 6, 7], and the automatic generation
of test oracles [4]. In all these applications, the equivalence
is exploited automatically, but must be identified manually.
The manual identification of equivalent method sequences is
a non-trivial and error prone activity that may represent an
obstacle to the practical applicability of these techniques.

1https://code.google.com/p/guava-libraries

FSE 2014
Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Ti
me

ou
t!

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Ti
me

ou
t!

Search-Based Synthesis of Equivalent Method Sequences

Alberto Goffi

†
, Alessandra Gorla

‡
, Andrea Mattavelli

†
, Mauro Pezzè

†⇤
, and Paolo Tonella

§

†
University of Lugano

Switzerland

{goffia, mattavea, pezzem}@usi.ch

‡
Saarland University

Germany

gorla@st.cs.uni-saarland.de

§

Fondazione Bruno Kessler

Italy

tonella@fbk.eu

ABSTRACT
Software components are usually redundant, since their in-
terface o↵ers di↵erent operations that are equivalent in their
functional behavior. Several reliability techniques exploit
this redundancy to either detect or tolerate faults in soft-
ware. Metamorphic testing, for instance, executes pairs of
sequences of operations that are expected to produce equiv-
alent results, and identifies faults in case of mismatching
outcomes. Some popular fault tolerance and self-healing
techniques execute redundant operations in an attempt to
avoid failures at runtime. The common assumption of these
techniques, though, is that such redundancy is known a priori.
This means that the set of operations that are supposed to
be equivalent in a given component should be available in
the specifications. Unfortunately, inferring this information
manually can be expensive and error prone.

This paper proposes a search-based technique to synthesize
sequences of method invocations that are equivalent to a
target method within a finite set of execution scenarios.
The experimental results obtained on 47 methods from 7
classes show that the proposed approach correctly identifies
equivalent method sequences in the majority of the cases
where redundancy was known to exist, with very few false
positives.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms
Measurement, Verification

Keywords
Redundancy, equivalent method sequences, search-based soft-
ware engineering, specification mining

⇤Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

1. INTRODUCTION
The presence of equivalent code fragments, for example

methods or method sequences, make modern software sys-
tems redundant. Informally, two methods are equivalent
if they produce indistinguishable results when called with
proper parameters. This is the case, for instance, of methods
put() and putAll() in the Google Guava class AbstractMul-

timap.1 They produce indistinguishable results when putAll()

is called with a collection containing the single value passed
to put(). Beside interchangeable methods, as in the previous
example, it is possible to obtain equivalent executions by
combining several method invocations. For example, method
pop() of class Stack in the Java standard library is equivalent
to the method sequence remove(size()-1). Indeed, remov-
ing the element on top of the stack (pop()) leads to the
same result as removing the element in the last position
(remove(size()-1)).

This form of redundancy should not be confused with
what are usually referred to as code clones. Code clones
are typically the result of bad design and implementation
practices, such as copy and paste, and indicate the need
of code refactoring [16]. Instead, the redundancy described
above is the result of good design practice, as it aims to
o↵er a richer API to client components and to increase code
reusability.

While in some cases redundancy exists only at the interface
level, it often extends to the underlying code. For example,
the code of methods pop and remove is substantially di↵erent,
as shown in Figure 1. The di↵erence in the implementation
extends even to removeElementAt, which is invoked by pop,
since it does not use the code of remove. We omit the code
of removeElementAt for lack of space.
Recent studies indicate that redundancy is widely spread

in software systems. Jiang and Su studied the Linux kernel
and found more than 600,000 semantically equivalent code
fragments [22], while Carzaniga et al. found more than 4,000
equivalent methods or method sequences in Java applications
and libraries of non trivial size and complexity, including
Apache Ant, Google Guava, Joda-Time and Eclipse SWT [5].

Equivalent method sequences find many useful applications,
from the automatic generation of test inputs [8], to the design
of self-healing systems [5, 6, 7], and the automatic generation
of test oracles [4]. In all these applications, the equivalence
is exploited automatically, but must be identified manually.
The manual identification of equivalent method sequences is
a non-trivial and error prone activity that may represent an
obstacle to the practical applicability of these techniques.

1https://code.google.com/p/guava-libraries

FSE 2014

Efficiency of Search-based Synthesis

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

Time (seconds)
0 10 20 30 40 50 60

6

7

8

6

6

15

11

18

15

20

16

16

20

18

Synthesis Counterexample

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.00

1.00

1.00

1.00

1.00

0.84

Recall

 90.5%

(on 30 runs)

Effectiveness of Search-based Synthesis

Can SBES identify equivalences
in Google Guava?

Google Guava
Basic utilities
Collections

Caches
Functional idioms

Concurrency
Strings

Primitives
Ranges

I/O
Hashing
Math

guava-libraries

Google Guava
Basic utilities
Collections

Caches
Functional idioms

Concurrency
Strings

Primitives
Ranges

I/O
Hashing
Math

guava-libraries

Google Guava: Challenges

Large Search Space

Generics Support

Google Guava: Large Search Space

5,400 methods

335 classes

guava-libraries

Google Guava: Large Search Space

addFirst(x) addElementAt(x,0)
pop() remove(size()-1)
x() get(0)
y() get(1)
z() get(2)

Memetic algorithms

Google Guava: Large Search Space

addFirst(x) addElementAt(x,0)
pop() remove(size()-1)
x() get(0)
y() get(1)
z() get(2)

Google Guava: Generics Support

class ArrayList<T>

class ContiguousSet<C extends Comparable>

class Condition<? super E>

class IterableToCollection<
E,
T extends Iterable<? extends E>,
C extends Condition<? super E>,
R extends Collection<E>

>

Execution scenarios

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(1, "String");

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(-4, "Test");
m.put(-4, "Test2");

Multimap<K, V>

Google Guava: Generics Support

Google Guava: Generics Support
Multimap<K, V>

Execution scenarios

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(1, "String");

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(-4, "Test");
m.put(-4, "Test2");

Google Guava: Generics Support

put(K key, V value) put(Integer key, String value)

Multimap<K, V>

Execution scenarios

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(1, "String");

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(-4, "Test");
m.put(-4, "Test2");

Google Guava: Generics Support
Multimap<K, V>

Execution scenarios

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(1, "String");

Multimap<Integer, String> m = new Multimap<Integer, String>();
m.put(-4, "Test");
m.put(-4, "Test2");

Generics to concrete
put(K key, V value) put(Integer key, String value)

Evaluation

Evaluation

220 methods
16 classes

guava-libraries

Evaluation

220 methods
16 classes

SBES SBES+G SBES+G,M

guava-libraries

Effectiveness of Synthesis
Tr

ue
 P

os
iti

ve
s

0

40

80

120

160

200 188
172

101

SBES SBES+G SBES+G,M

Effectiveness of Synthesis
Tr

ue
 P

os
iti

ve
s

0

40

80

120

160

200 188
172

101

SBES SBES+G SBES+G,M

+70% +86%

Effectiveness of Memetic Algorithms
Tr

ue
 P

os
iti

ve
s

0

40

80

120

160

200

174175
188

170

142

10 50 75 85 100

Frequency of local search (generations)

Fa
ls

e
Po

si
tiv

es

0

15

30

45

60

50
47

28

SBES SBES+G SBES+G,M

Effectiveness of Counterexamples

Fi
tn

es
s

va
lu

e

Effectiveness of Counterexamples
Synthesis Counterexample

public void method_under_test() {
if(distance(this,clone)==0 &&

 distance(expected,actual)==0) {
// equivalent!

}
}

public void method_under_test() {
if(distance(this,clone)>0 ||

 distance(expected,actual)>0) {
// counterexample!

}
}

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Tim
eo
ut
!

Effectiveness of Synthesis

Tr
ue

 P
os

iti
ve

s

0

40

80

120

160

200 188
172

101

SBES SBES+G SBES+G,M

Fa
ls

e
Po

si
tiv

es

0

15

30

45

60

50
47

28

SBES SBES+G SBES+G,M

Effectiveness of Counterexamples

Google Guava: Challenges

Large Search Space

Generics Support

Memetic algorithms

Generic-to-concrete

Google Guava: Challenges

Large Search Space

Generics Support

Memetic algorithms

Generic-to-concrete
Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Synthesis Counterexample

Stack

Search-based Synthesis of Equivalences

Tim
eo
ut
!

Effectiveness of Synthesis

Tr
ue

 P
os

iti
ve

s

0

40

80

120

160

200 188
172

101

SBES SBES+G SBES+G,M

Fa
ls

e
Po

si
tiv

es

0

15

30

45

60

50
47

28

SBES SBES+G SBES+G,M

Effectiveness of Counterexamples
star.inf.usi.ch/sbes-challenge

