
How to Measure
Software Redundancy

Andrea Mattavelli
University of Lugano, Switzerland

In collaboration with:
A. Carzaniga, M. Pezzè

(…and A. Gorla, A. Goffi, N. Perino)

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input

Input Checkpoint Execute
Version Test

Output

Output

Exception Fail

Restore

Alternatives? Fail
No

N-version Recovery Blocks

Yes

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input

Input Checkpoint Execute
Version Test

Output

Output

Exception Fail

Restore

Alternatives? Fail
No

N-version Recovery Blocks

Yes

Software Redundancy
Deliberate

Intrinsic
Software Redundancy

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);

Google Guava

Intrinsic
Software Redundancy

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Intrinsic
Software Redundancy

Joda-Time

4700+
equivalences

GraphStream

SWT

Intrinsic
Software Redundancy

Automatic Recovery From Runtime Failures
Carzaniga, Gorla, Mattavelli, Perino, Pezzè [ICSE 2013]

Cross-checking Oracles from Intrinsic Software Redundancy
Goffi, Carzaniga, Gorla, Mattavelli, Pezzè [ICSE 2014]

Exploiting Intrinsic Redundancy

Application state space

A

B

Automatic Runtime Recovery

Application state space

A

B

Fault

Automatic Runtime Recovery

Application state space

A

B

Failure detection

Fault

Automatic Runtime Recovery

Application state space

A

B

Failure detection

Checkpoint /
Restore

Fault

Automatic Runtime Recovery

Application state space

A

B

Fault

Failure detection

Checkpoint /
Restore

Workaround

Automatic Runtime Recovery

JodaTime

Mutants 347

67Successfully
recovered

FB2PDF

Guava

Carrot2Caliper Closure
compiler

87

24

50

24

148

64
27% 48% 43% 19%

Automatic Runtime Recovery

Software Redundancy

Software Redundancy?

Software Redundancy

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Intrinsic

?

How much code
do they share?

Deliberate Intrinsic

Software Redundancy?

Failures are correlated
[Knight et al.]

How much code
do they share?

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

Measuring Software Redundancy
Carzaniga, Mattavelli, Pezzè [ICSE 2015]

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Two fragments are redundant when they
are functionally equivalent and at the
same time their executions are different.“

Informal Definition of Redundancy

S0

Sn

CA

Informal Definition of Redundancy

CA

Informal Definition of Redundancy

CB

CA

CB

CA

Equivalence

CB

CA
Execution Diversity

Functional Equivalence

CB

CAS

Functional Equivalence

Observational Equivalence

OCP

OCP

Observational Equivalence

CP

CP

CP

OCP

OCP

CP

Observational Equivalence

CP

OCP

OCP

CP

OCP2

OCP2

CP2

CP2

OCP4

OCP4

CP4

CP4

OCP3

OCP3

CP3

CP3

Observational Equivalence

CB

CA

Execution Diversity

CB

CA

Execution Diversity

Execution CA

Execution CB

S

Execution Diversity

actionA actionB actionC actionD …
Execution CA

Execution CB

actionZ actionB actionC actionD …

Execution Diversity

actionA actionB actionC actionD …

actionZ actionB actionC actionD …

Execution CA

Execution CB

Software Redundancy

Observational
Equivalence

Execution
Diversity

∧

Software Redundancy

Observational
EquivalenceUndecidable Execution

Diversity
∧

Software Redundancy

Observational
EquivalenceUndecidable

Binary measure ⟶ Richer measure

Execution
Diversity

∧

A Practical Measure of Redundancy

A Practical Measure of Redundancy

Degree of
Equivalence

Degree of
DiversityR= f),(

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)0

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)0

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)11

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

A Practical Measure of Redundancy

R = AGGREGATE(RS)CA,CB

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

A Practical Measure of Redundancy

R = AGGREGATE(RS)CA,CB

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Sample the state space

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Observational equivalence
measure

R = AGGREGATE(RS)CA,CB

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Difference between
executions

R = AGGREGATE(RS)CA,CB

R = AGGREGATE(RS)CA,CB

A Practical Measure of Redundancy

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Aggregate the redundancy measure

Sampling the State Space

ArrayListMultimap var0 = ArrayListMultimap.create();
var0.clear();
ArrayListMultimap var3 = ArrayListMultimap.create();
var3.clear();
boolean var5 = var3.isEmpty();
ArrayListMultimap var6 = ArrayListMultimap.create();
var6.clear();
boolean var8 = var6.isEmpty();
boolean var9 = var3.putAll((Multimap) var6);
java.util.List var11 = var3.removeAll("hi!");
boolean var12 = var0.putAll((short) (-1), (java.lang.Iterable) var11);
var0.clear();
ArrayListMultimap var14 = ArrayListMultimap.create((Multimap) var0);
ArrayListMultimap var17 = ArrayListMultimap.create(1, 10);
var17.clear();
ArrayListMultimap var19 = ArrayListMultimap.create();
var19.clear();
ArrayListMultimap var21 = ArrayListMultimap.create((Multimap) var19);
boolean var22 = var14.put(var17, var19);

Sampling the State Space

ArrayListMultimap var0 = ArrayListMultimap.create();
var0.clear();
ArrayListMultimap var3 = ArrayListMultimap.create();
var3.clear();
boolean var5 = var3.isEmpty();
ArrayListMultimap var6 = ArrayListMultimap.create();
var6.clear();
boolean var8 = var6.isEmpty();
boolean var9 = var3.putAll((Multimap) var6);
java.util.List var11 = var3.removeAll("hi!");
boolean var12 = var0.putAll((short) (-1), (java.lang.Iterable) var11);
var0.clear();
ArrayListMultimap var14 = ArrayListMultimap.create((Multimap) var0);
ArrayListMultimap var17 = ArrayListMultimap.create(1, 10);
var17.clear();
ArrayListMultimap var19 = ArrayListMultimap.create();
var19.clear();
ArrayListMultimap var21 = ArrayListMultimap.create((Multimap) var19);
boolean var22 = var14.put(var17, var19); // Code fragment A

Sampling the State Space

ArrayListMultimap var0 = ArrayListMultimap.create();
var0.clear();
ArrayListMultimap var3 = ArrayListMultimap.create();
var3.clear();
boolean var5 = var3.isEmpty();
ArrayListMultimap var6 = ArrayListMultimap.create();
var6.clear();
boolean var8 = var6.isEmpty();
boolean var9 = var3.putAll((Multimap) var6);
java.util.List var11 = var3.removeAll("hi!");
boolean var12 = var0.putAll((short) (-1), (java.lang.Iterable) var11);
var0.clear();
ArrayListMultimap var14 = ArrayListMultimap.create((Multimap) var0);
ArrayListMultimap var17 = ArrayListMultimap.create(1, 10);
var17.clear();
ArrayListMultimap var19 = ArrayListMultimap.create();
var19.clear();
ArrayListMultimap var21 = ArrayListMultimap.create((Multimap) var19);
boolean var22 = var14.put(var17, var19); // Code fragment A

Observational Equivalence MeasureObservational Equivalence Measure

boolean var12 = var0.putAll((short) (-1), (java.lang.Iterable) var11);
var0.clear();
ArrayListMultimap var14 = ArrayListMultimap.create((Multimap) var0);
ArrayListMultimap var17 = ArrayListMultimap.create(1, 10);
var17.clear();
ArrayListMultimap var19 = ArrayListMultimap.create();
var19.clear();
ArrayListMultimap var21 = ArrayListMultimap.create((Multimap) var19);
boolean var22 = var14.put(var17, var19); // Code fragment A

Observational Equivalence MeasureObservational Equivalence Measure

// linkage: boolean var22, ArrayListMultimap var14

boolean var22 = var14.put(var17, var19);
// Code fragment A

Observational Equivalence Measure

List list = new List(); list.add(var19);
boolean var22 = var14.putAll(var17, list);

// linkage: boolean var22, ArrayListMultimap var14

boolean var22 = var14.put(var17, var19);
// Code fragment A // Code fragment B

Observational Equivalence Measure

List list = new List(); list.add(var19);
boolean var22 = var14.putAll(var17, list);

// linkage: boolean var22, ArrayListMultimap var14

boolean var22 = var14.put(var17, var19);
// Code fragment A // Code fragment B

Observational Equivalence Measure

// generated probing code:
System.out.println(var22);
boolean x0 = var14.isEmpty();
System.out.println(x0);
var14.clear();
java.util.Map x1 = var14.asMap();
int x2 = var14.size();  
System.out.println(x2);  
int x3 = x1.size();
System.out.println(x3);  
java.util.Set x4 = x1.entrySet();
java.util.Iterator x5 = x4.iterator();
boolean x6 = x4.isEmpty();  
System.out.println(x6);  
try {
x5.remove();

} catch (java.lang.IllegalStateException e) {
System.out.println(e);

}
// ... probing code continues

List list = new List(); list.add(var19);
boolean var22 = var14.putAll(var17, list);

// linkage: boolean var22, ArrayListMultimap var14

boolean var22 = var14.put(var17, var19);
// Code fragment A // Code fragment B

Observational Equivalence Measure

// generated probing code:
System.out.println(var22);
boolean x0 = var14.isEmpty();
System.out.println(x0);
var14.clear();
java.util.Map x1 = var14.asMap();
int x2 = var14.size();  
System.out.println(x2);  
int x3 = x1.size();
System.out.println(x3);  
java.util.Set x4 = x1.entrySet();
java.util.Iterator x5 = x4.iterator();
boolean x6 = x4.isEmpty();  
System.out.println(x6);  
try {
x5.remove();

} catch (java.lang.IllegalStateException e) {
System.out.println(e);

}
// ... probing code continues

true

false

1

1

false

…

true

false

1

1

false

…

eS(CA,CB) = total
successful

Observational Equivalence Measure

CP1
CP2
CP3
CP4
CP5
CP6
CP7
CP8
CP9

CP10

eS(CA,CB) = 1.0

CP1
CP2
CP3
CP4
CP5
CP6
CP7
CP8
CP9

CP10

eS(CA,CB) = 0.7

ArrayListMultimap var0 = ArrayListMultimap.create();
var0.clear();
ArrayListMultimap var3 = ArrayListMultimap.create();
var3.clear();
boolean var5 = var3.isEmpty();
ArrayListMultimap var6 = ArrayListMultimap.create();
var6.clear();
boolean var8 = var6.isEmpty();
boolean var9 = var3.putAll((Multimap) var6);
java.util.List var11 = var3.removeAll("hi!");
boolean var12 = var0.putAll((short) (-1), (java.lang.Iterable) var11);
var0.clear();
ArrayListMultimap var14 = ArrayListMultimap.create((Multimap) var0);
ArrayListMultimap var17 = ArrayListMultimap.create(1, 10);
var17.clear();
ArrayListMultimap var19 = ArrayListMultimap.create();
var19.clear();
ArrayListMultimap var21 = ArrayListMultimap.create((Multimap) var19);
boolean var22 = var14.put(var17, var19);

Difference Between Executions

ArrayListMultimap var14 = ArrayListMultimap.create((Multimap) var0);
ArrayListMultimap var17 = ArrayListMultimap.create(1, 10);
var17.clear();
ArrayListMultimap var19 = ArrayListMultimap.create();
var19.clear();
ArrayListMultimap var21 = ArrayListMultimap.create((Multimap) var19);
boolean var22 = var14.put(var17, var19);

Difference Between Executions

Code Projections

Difference Between Executions
boolean var22 = var14.put(var17, var19); // Trace code fragment A

ArrayListMultimap.put(LObject;LObject;)Z@66
AbstractListMultimap.put(LObject;LObject;)Z@95
AbstractMultimap.put(LObject;LObject;)Z@200

Statement

3:ArrayListMultimap.put(LObject;LObject;)Z@66
4:AbstractListMultimap.put(LObject;LObject;)Z@95
5:AbstractMultimap.put(LObject;LObject;)Z@200

Statement, Depth

Code Projections

Difference Between Executions
boolean var22 = var14.put(var17, var19); // Trace code fragment A

Ljava/util/Map;⟶{}
Ljava/util/Set;⟶[]  
Ljava/util/HashMap;⟶{}  
I⟶1  
I⟵1

Type, Value

AbstractMultimap.map⟶{}
HashMap.entrySet⟶[]
HashMap$EntrySet.this$0⟶{}
HashMap$HashIterator.modCount⟶1
HashMap$HashIterator.expectedModCount⟵1

Class, Field, Value

Data Projections

Difference Between Executions
boolean var22 = var14.put(var17, var19); // Trace code fragment A

Difference Between Executions

ArrayListMultimap.put(LObject;LObject;)Z@66
AbstractListMultimap.put(LObject;LObject;)Z@95
AbstractMultimap.put(LObject;LObject;)Z@200
ArrayListMultimap.hashCode()I@66
AbstractMultimap.hashCode()I@1380
AbstractMap.hashCode()I@491
AbstractMap.hashCode()I@492
HashMap.entrySet()LSet;@953
HashMap.entrySet0()LSet;@957
HashMap.entrySet0()LSet;@958

ArrayListMultimap.putAll(LObject;LIterable;)Z@66
AbstractMultimap.putAll(LObject;LIterable;)Z@248
ArrayList.iterator()LIterator;@774
ArrayList$Itr.<init>(LArrayList;LArrayList$1;)V@780
ArrayList$Itr.<init>(LArrayList;)V@780
ArrayList$Itr.<init>(LArrayList;)V@782
ArrayList$Itr.<init>(LArrayList;)V@783
ArrayList$Itr.hasNext()Z@786
ArrayList.access$100(LArrayList;)I@102
AbstractMultimap.putAll(LObject;LIterable;)Z@252
AbstractMultimap.getOrCreateCollection(LObject;)LCollection;@219
HashMap.get(LObject;)LObject;@315
HashMap.get(LObject;)LObject;@317
HashMap.hash(I)I@268
HashMap.hash(I)I@269
HashMap.get(LObject;)LObject;@318
HashMap.indexFor(II)I@276

Code projection
CA

Code projection
CB

Difference Between Executions

dS(CA,CB) = 1-SIMILARITY(PS,A, PS,B)

ArrayListMultimap.put(LObject;LObject;)Z@66
AbstractListMultimap.put(LObject;LObject;)Z@95
AbstractMultimap.put(LObject;LObject;)Z@200
ArrayListMultimap.hashCode()I@66
AbstractMultimap.hashCode()I@1380
AbstractMap.hashCode()I@491
AbstractMap.hashCode()I@492
HashMap.entrySet()LSet;@953
HashMap.entrySet0()LSet;@957
HashMap.entrySet0()LSet;@958

ArrayListMultimap.putAll(LObject;LIterable;)Z@66
AbstractMultimap.putAll(LObject;LIterable;)Z@248
ArrayList.iterator()LIterator;@774
ArrayList$Itr.<init>(LArrayList;LArrayList$1;)V@780
ArrayList$Itr.<init>(LArrayList;)V@780
ArrayList$Itr.<init>(LArrayList;)V@782
ArrayList$Itr.<init>(LArrayList;)V@783
ArrayList$Itr.hasNext()Z@786
ArrayList.access$100(LArrayList;)I@102
AbstractMultimap.putAll(LObject;LIterable;)Z@252
AbstractMultimap.getOrCreateCollection(LObject;)LCollection;@219
HashMap.get(LObject;)LObject;@315
HashMap.get(LObject;)LObject;@317
HashMap.hash(I)I@268
HashMap.hash(I)I@269
HashMap.get(LObject;)LObject;@318
HashMap.indexFor(II)I@276

Code projection
CA

Code projection
CB

A Practical Measure of Redundancy

es ds Rs
S0 1.0 0.32989693 0.32989693
S1 1.0 0.51781228 0.51781228
S2 1.0 0.32989693 0.32989693
S3 1.0 0.51781228 0.51781228
S4 1.0 0.51781228 0.51781228
S5 1.0 0.32989693 0.32989693
S6 1.0 0.32989693 0.32989693
S7 1.0 0.51781228 0.51781228
S8 0.9 0.61892315 0.55703083
S9 1.0 0.32989693 0.32989693
S10 1.0 0.32989693 0.32989693

A Practical Measure of Redundancy

es ds Rs
S0 1.0 0.32989693 0.32989693
S1 1.0 0.51781228 0.51781228
S2 1.0 0.32989693 0.32989693
S3 1.0 0.51781228 0.51781228
S4 1.0 0.51781228 0.51781228
S5 1.0 0.32989693 0.32989693
S6 1.0 0.32989693 0.32989693
S7 1.0 0.51781228 0.51781228
S8 0.9 0.61892315 0.55703083
S9 1.0 0.32989693 0.32989693
S10 1.0 0.32989693 0.32989693

A Practical Measure of Redundancy

es ds Rs
S0 1.0 0.32989693 0.32989693
S1 1.0 0.51781228 0.51781228
S2 1.0 0.32989693 0.32989693
S3 1.0 0.51781228 0.51781228
S4 1.0 0.51781228 0.51781228
S5 1.0 0.32989693 0.32989693
S6 1.0 0.32989693 0.32989693
S7 1.0 0.51781228 0.51781228
S8 0.9 0.61892315 0.55703083
S9 1.0 0.32989693 0.32989693
S10 1.0 0.32989693 0.32989693

A Practical Measure of Redundancy

es ds Rs
S0 1.0 0.32989693 0.32989693
S1 1.0 0.51781228 0.51781228
S2 1.0 0.32989693 0.32989693
S3 1.0 0.51781228 0.51781228
S4 1.0 0.51781228 0.51781228
S5 1.0 0.32989693 0.32989693
S6 1.0 0.32989693 0.32989693
S7 1.0 0.51781228 0.51781228
S8 0.9 0.61892315 0.55703083
S9 1.0 0.32989693 0.32989693
S10 1.0 0.32989693 0.32989693

A Practical Measure of Redundancy

es ds Rs
S0 1.0 0.32989693 0.32989693
S1 1.0 0.51781228 0.51781228
S2 1.0 0.32989693 0.32989693
S3 1.0 0.51781228 0.51781228
S4 1.0 0.51781228 0.51781228
S5 1.0 0.32989693 0.32989693
S6 1.0 0.32989693 0.32989693
S7 1.0 0.51781228 0.51781228
S8 0.9 0.61892315 0.55703083
S9 1.0 0.32989693 0.32989693
S10 1.0 0.32989693 0.32989693

R = AVG(Rs) = 0.418 ± 0.10

A Practical Measure of Redundancy

Evaluation

- van de Snepscheut
“In theory, there is no difference between

theory and practice.
But, in practice, there is.

Evaluation

Is the proposed measure consistent?

Are the measurements significant and useful?

Evaluation

Is the proposed measure consistent?

Are the measurements significant and useful?

Consistency: Stability

Consistency: Stability

Algorithm # Impl.

Binary search 4
Linear search 4

Bubble sort 7
Insertion sort 3
Merge sort 4
Quicksort 3

Ground Truth

Consistency: Stability

Data Projections

Code Projections

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

Evaluation

Is the proposed measure consistent?

Are the measurements significant and useful?

Low-level vs High-level
Code Redundancy vs Algorithmic Redundancy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

Binary search Linear search

Bubble sort Insertion sort

Same algorithm, different implementation

Low-level vs High-level
Code Redundancy vs Algorithmic Redundancy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

Binary search Linear search

Bubble sort Insertion sort

Same algorithm, different implementation

Low-level vs High-level
Code Redundancy vs Algorithmic Redundancy

Binary search Linear search

Bubble sort Insertion sort

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e

d
u

n
d

a
n

cy

Low-level vs High-level
Code Redundancy vs Algorithmic Redundancy

Different algorithm

Predictive Ability

Application state space

A

B

Fault

Failure detection

Checkpoint /
Restore

Workaround

Automatic Runtime Recovery

Predictive Ability

Application state space

A

B

Fault

Failure detection

Checkpoint /
Restore

Workaround

Automatic Runtime Recovery

Does redundancy correlate with success?

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Carrot2

Caliper

Predictive Ability

TABLE VII
CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Correlation: 0.94

Carrot2

Caliper

Predictive Ability

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Two fragments are redundant when they
are functionally equivalent and at the
same time their executions are different.“

Informal Definition of RedundancySoftware Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Two fragments are redundant when they
are functionally equivalent and at the
same time their executions are different.“

Informal Definition of Redundancy A Practical Measure of Redundancy

R = AGGREGATE(RS)CA,CB

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Two fragments are redundant when they
are functionally equivalent and at the
same time their executions are different.“

Informal Definition of Redundancy A Practical Measure of Redundancy

R = AGGREGATE(RS)CA,CB

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Consistency: Stability

Data Projections

Code Projections

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Two fragments are redundant when they
are functionally equivalent and at the
same time their executions are different.“

Informal Definition of Redundancy A Practical Measure of Redundancy

R = AGGREGATE(RS)CA,CB

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Consistency: Stability

Data Projections

Code Projections

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

Binary search Linear search

Bubble sort Insertion sort

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

Different algorithm

Low-level vs High-level
Code Redundancy vs Algorithmic Redundancy

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

Two fragments are redundant when they
are functionally equivalent and at the
same time their executions are different.“

Informal Definition of Redundancy A Practical Measure of Redundancy

R = AGGREGATE(RS)CA,CB

eS, dS ∈ [0,1]
RS = eS(CA,CB) × dS(CA,CB)

Consistency: Stability

Data Projections

Code Projections

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

 0

 0.2

 0.4

 0.6

 0.8

 1

ADice Man Cos DamLev Dice Euclid Jaccard Jaro JaroW Lev MC Need Ovlp qGrams SmithW SmithG

R
e

d
u

n
d

a
n

cy

Extract to local variable Change name Inline expression Extract method Equivalent input

Binary search Linear search

Bubble sort Insertion sort

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

 0

 0.2

 0.4

 0.6

 0.8

 1

DamLev Lev Need SmithW SmithG

R
e
d
u
n
d
a
n
cy

Different algorithm

Low-level vs High-level
Code Redundancy vs Algorithmic Redundancy TABLE VII

CORRELATION BETWEEN REDUNDANCY MEASURE AND THE EFFECTIVENESS OF AUTOMATIC WORKAROUNDS

System Method (CA) Workaround (CB) Success ratio Redundancy

Caliper

Iterators.forArray(a) Arrays.asList(a).iterator() 3/3 (100%) 1.00 ± 0.00
LinkedHashMultiset.retainAll(Collection c) foreach(o in map) if(o not in c) map.remove(o); 1/2 (50%) 0.61 ±0.01
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 8/41 (20%) 0.37 ±0.32
LinkedHashMultimap.putAll(Object k, Collection c) foreach(o in c) put(k,o); 0/1 (0%) 0.00 ±0.00
LinkedHashMultimap.create() create(100,100) 0/207 (0%) 0.12 ±0.15
LinkedHashMultimap.create(int,int) create() 0/202 (0%) 0.12 ±0.15
LinkedHashMultimap.isEmpty() size() == 0 ? true : false 0/34 (0%) 0.00 ±0.00

Carrot

ImmutableMultiset.of(Object..c) foreach(o in c) builder().setCount(o,count(o in c)) 13/22 (59%) 0.56 ±0.07
ImmutableMultiset.of(Object..c) builder().add(..c).build() 7/19 (37%) 0.24 ±0.12
ArrayListMultimap.putAll(Object k,Collection c) foreach(o in c) put(k,o); 1/13 (8%) 0.37 ±0.32
ImmutableMultiset.of(Object o) builder().add(o).build() 0/1 (0%) 0.32 ±0.14
Lists.newArrayList() new ArrayList() 0/24 (0%) 0.00 ±0.00
Lists.newArrayList() new ArrayList(10) 0/24 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList() 0/20 (0%) 0.00 ±0.00
Lists.newArrayListWithCapacity(int c) new ArrayList(c) 0/20 (0%) 0.00 ±0.00
Maps.newHashMap() Maps.newHashMapWithExpectedSize(16) 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap() 0/54 (0%) 0.00 ±0.00
Maps.newHashMap() new HashMap(16) 0/54 (0%) 0.00 ±0.00

The most obvious cases are when the two code fragments
(CA and CB) are either not redundant at all or completely
redundant. When there is no redundancy, the equivalence is also
completely ineffective to obtain workarounds, and conversely,
when we obtain a measure of complete redundancy in the case
of Iterators.forArray(a) in Caliper, the equivalence is always
effective as a workaround.

The redundancy measure is also a good indicator of the
success of a workaround in the other non extreme cases. Con-
sider for example the case of ImmutableMultiset.of(Object..c)
in Carrot where the first equivalent alternative has a higher
redundancy measure and a higher success ratio than the second
one (0.56±0.07 and 0.59 vs. 0.24±0.12 and 0.36). This case
shows that the redundancy measure can be an effective predictor
to select or rank alternative fragments for use as workarounds.

Overall we obtain a positive correlation (coefficient 0.94)
from which we conclude that our redundancy measure is indeed
a good indicator and predictor of useful design properties.

D. Threats to Validity

We acknowledge potential problems that might limit the
validity of our experimental results. Here we briefly discuss
the countermeasures we adopted to mitigate such threats. The
internal validity depends on the correctness of our prototype
implementations, and may be threatened by the evaluation
setting and the execution of the experiments. The prototype
tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action
sequences. We collected and filtered the actions of interests
with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection
of case studies. An extensive evaluation of the proposed
measurements is out of the scope of this paper, whose goal
is to discuss and formally define the concept of software
redundancy. We present results obtained on what we would
refer to as “ground truth,” that is, on cases with clear and

obvious expectations that would therefore allow us to check
the significance and robustness of the proposed metrics.

V. CONCLUSION

In the past we developed techniques to exploit the redundancy
of software, to make software more reliable and adaptive.
Several other techniques, more or less mature, exploit the
redundancy of software in a similar way. On the basis of this
past experience, we now want to gain a deeper and at the same
time broader understanding of software redundancy. And the
first step is to model and measure redundancy.

This is what we did in this paper. We formulated a model that
we consider expressive and meaningful, and we derived from
it a concrete measurement method that we evaluated for its
consistency (does the measurement make sense at a very basic
level?) and predictive ability (is it a good indicator of useful
properties?). Our experiments show that the measurements are
indeed consistent and significant, which means that they can
be useful in support of a more principled use of redundancy
in software design.

We see a number of ways to build upon this work. One would
be to enhance the model. The main limitation of the model is
that it considers only single-threaded code fragments. Notice
in fact that the model, as well as the measure of dissimilarity,
is based on the notion of an execution consisting of one
sequence of actions. One way to model multi-threaded code
would be to linearize parallel executions, although that might
be an unrealistic oversimplification. Other straightforward
extensions include a more extensive experimentation and an
improved measurement, in particular in sampling the state
space. However, our primary interest is now in using the model
and the measurement to study redundancy further. Our ultimate
goal is to comprehend redundancy as a phenomenon, to harness
its power by design.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation with project SHADE (grant n. 200021-138006).

Correlation: 0.94

Carrot2

Caliper

Predictive Ability

Software Redundancy

Version 1

Version 2

Version n

Selection
Algorithm

...

Input Output

N-version

Deliberate Intrinsic

How much redundancy is there?

?

MultiMap m = new MultiMap();
//…
//add a key-value pair in the map
m.put(key, value);
 m.putAll(key, new List().add(value));
 m.entrySet().add(new Entry(key, value));

Google Guava

