
Search-based Synthesis of
Equivalent Method Sequences

Alessandra Gorla
Saarland University - Germany

Paolo Tonella
Fondazione Bruno Kessler - Italy

Alberto Goffi, Andrea Mattavelli, Mauro Pezzè
University of Lugano - Switzerland

Software is Redundant

A system is redundant when it is able
to perform equivalent functionalities
by executing different code.“

A system is redundant when it is able
to perform equivalent functionalities
by executing different code.“

 lead to identical states

compute identical results

Software is Redundant

Equivalence in Software

Stack s = new Stack();  
//...  
//remove the element on top of the stack  
s.pop();

Java Stack

Stack s = new Stack();  
//...  
//remove the element on top of the stack  
s.pop();
s.remove(size() - 1);
s.removeElementAt(size() - 1);

Java Stack

Equivalence in Software

DateTime t = new DateTime();  
//...  
//get the beginning of the day for time t 
DateTime beginDay = t.millisOfDay().withMinimumValue();

Joda-Time

Stack s = new Stack();  
//...  
//remove the element on top of the stack  
s.pop();
s.remove(size() - 1);
s.removeElementAt(size() - 1);

Java Stack

Equivalence in Software

DateTime t = new DateTime();  
//...  
//get the beginning of the day for time t 
DateTime beginDay = t.millisOfDay().withMinimumValue();

 = t.toDateMidnight().toDateTime();
 = t.withTimeAtStartOfDay();

Joda-Time

Java Stack
Stack s = new Stack();  
//...  
//remove the element on top of the stack  
s.pop();
s.remove(size() - 1);
s.removeElementAt(size() - 1);

Equivalence in Software

Automatic Recovery from Runtime Failures
Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Automatic Recovery from Runtime Failures
Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Manual identification
of equivalence

Automatic Recovery from Runtime Failures
Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Manual identification
of equivalence

… is the main cost!

Automatic Synthesis of
Equivalent Method Sequences

pop()

int el = s.peek();
int index = s.size();
index = index - 1;
s.remove(index);
return el;

Automatic Synthesis of Equivalences

Stack

pop()

Execution scenarios

Automatic Synthesis of Equivalences

int el = s.peek();
int index = s.size();
index = index - 1;
s.remove(index);
return el;

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Stack

pop()

Execution scenarios

Automatic Synthesis of Equivalences

Synthesis

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Stack

pop()

Execution scenarios

Automatic Synthesis of Equivalences

Synthesis Counterexample

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Stack

pop()

Execution scenarios

Automatic Synthesis of Equivalences

Synthesis Counterexample

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Stack

pop()

Execution scenarios

Automatic Synthesis of Equivalences

Synthesis Counterexample

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Stack

pop()

Execution scenarios

Automatic Synthesis of Equivalences

Synthesis Counterexample

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Tim
eo

ut!
Stack

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

pop()

Execution scenarios

Tim
eo

ut!

Automatic Synthesis of Equivalences

Synthesis Counterexample

Stack

pop()

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Execution scenarios

Search-based Synthesis of Equivalences

Tim
eo

ut!
Stack

Synthesis Counterexample

pop()

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Execution scenarios

Search-based Synthesis of Equivalences

Tim
eo

ut!
Stack

Equivalence Synthesis as TCG Problem
public void method_under_test() {

if (condition) {
// equivalent!

}
}

public void method_under_test() {
if (condition) {

// equivalent!
}

}

Equivalence Synthesis as TCG Problem

On all execution scenarios:
•compute identical results
• lead to identical object states

public void method_under_test() {
if (condition) {

// equivalent!
}

}

Equivalence Synthesis as TCG Problem

Execution scenarios

pop()

Stack

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

public void method_under_test() {
if (condition) {

// equivalent!
}

}

Equivalence Synthesis as TCG Problem

pop()

Stack

? ? ? ? ?

? ? ? ? ?

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = ;

Stack s = new Stack();
s.push(-4);
int ret = ;

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

public void method_under_test() {
if (== && == &&

){
// equivalent!

}
}

Equivalence Synthesis as TCG Problem

pop()

Stack

? ? ? ? ?

? ? ? ? ?

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = ;

Stack s = new Stack();
s.push(-4);
int ret = ;

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

public void method_under_test() {
if (== && == &&

 == && ==){
// equivalent!

}
}

Equivalence Synthesis as TCG Problem

pop()

Stack

? ? ? ? ?

? ? ? ? ?

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = ;

Stack s = new Stack();
s.push(-4);
int ret = ;

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

public void method_under_test() {
if (== && == &&

 == && ==){
// equivalent!

}
}

Equivalence Synthesis as TCG Problem

? ? ? ? ?

? ? ? ? ?

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = ;

Stack s = new Stack();
s.push(-4);
int ret = ;

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

public void method_under_test() {
if (== && == &&

 == && ==){
// equivalent!

}
}

Equivalence Synthesis as TCG Problem

remove(0)

Stack

? ? ? ? ?

? ? ? ? ?

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = ;

Stack s = new Stack();
s.push(-4);
int ret = ;

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

Equivalence Synthesis as TCG Problem

remove(0)

public void method_under_test() {
if (== && == &&

 == && ==){
// equivalent!

}
}

Stack

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.remove(0);

Stack s = new Stack();
s.push(-4);
int ret = s.remove(0);

public void method_under_test() {
if ([1] == [1] && [] == [] &&

 1 == 1 && -4 == -4){
// equivalent!

}
}

Equivalence Synthesis as TCG Problem

remove(0)

Stack

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(-4);
int ret = s.pop();

Stack s = new Stack();
s.push(1);
s.push(1);
int ret = s.remove(0);

Stack s = new Stack();
s.push(-4);
int ret = s.remove(0);

pop()

Execution scenarios

Synthesis Counterexample

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

remove(0)

Stack

Search-based Synthesis of Equivalences

public void method_under_test() {
if (condition) {

// counterexample
}

}

Counterexample as TCG Problem

public void method_under_test() {
if (condition) {

// counterexample
}

}

Counterexample as TCG Problem

On one execution scenario:
•compute different results, or
• lead to different object states

public void method_under_test() {
if (condition) {

// counterexample
}

}

Counterexample as TCG Problem

remove(0)

Stack

int ret = s.pop(); int ret = s.remove(0);

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

public void method_under_test() {
if (!= ||

 !=) {
 // counterexample
 }
}

Counterexample as TCG Problem

remove(0)

Stack

int ret = s.pop();

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
int ret = s.remove(0);

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

public void method_under_test() {
if (!= ||

 !=) {
 // counterexample
 }
}

Counterexample as TCG Problem

remove(0)

Stack

int ret = s.pop();

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
int ret = s.remove(0);

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

public void method_under_test() {
if (!= ||

 !=) {
 // counterexample
 }
}

Counterexample as TCG Problem

int ret = s.pop();

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
int ret = s.remove(0);

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

public void method_under_test() {
if (!= ||

 !=) {
 // counterexample
 }
}

Counterexample as TCG Problem

Stack s = new Stack();
s.push(0);
s.push(1);

int ret = s.pop();

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?
int ret = s.remove(0);

? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ?

public void method_under_test() {
if (!= ||

 !=) {
 // counterexample
 }
}

Counterexample as TCG Problem

Stack s = new Stack();
s.push(0);
s.push(1);

Stack s = new Stack();
s.push(0);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(0);
s.push(1);
int ret = s.remove(0);

Counterexample as TCG Problem

Stack s = new Stack();
s.push(0);
s.push(1);

public void method_under_test() {
if ([0] != [1] ||

 1 != 0) {
 // counterexample
 }
}

Stack s = new Stack();
s.push(0);
s.push(1);
int ret = s.pop();

Stack s = new Stack();
s.push(0);
s.push(1);
int ret = s.remove(0);

pop()

Execution scenarios

Synthesis Counterexample

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

remove(0)

Stack s = new Stack();
s.push(0); s.push(1);

Stack

Search-based Synthesis of Equivalences

Search-based Synthesis of Equivalences
SBES

Search-based Synthesis of Equivalences
SBES

clear()

Execution scenario

Stack

Search-based Synthesis of Equivalences
SBES

clear()

Execution scenario

Stack

• removeAllElements()
• setSize(0)
• Collection c = new Collection();
retainAll(c)

Search-based Synthesis of Equivalences
SBES

clear()

Execution scenario

Stack

• removeAllElements()
• setSize(0)
• Collection c = new Collection();
retainAll(c)

Search-based Synthesis of Equivalences
SBES

clear()

Execution scenario

• removeAllElements()
• setSize(0)
• Collection c = new Collection();
retainAll(c)

Stack

Evaluation

Evaluation

GraphStream

java.util.Stack

graphstream.Path
graphstream.Edge
graphstream.Node
graphstream.MultiNode
graphstream.Vector2
graphstream.Vector3

Evaluation

java.util.Stack

pop() remove(size() - 1)

Evaluation

java.util.Stack

pop() remove(size() - 1)

push(0);pop();
remove(size() - 1)

Evaluation

java.util.Stack

pop() remove(size() - 1)

push(0);pop();
remove(size() - 1)

push(0);pop(); push(0);pop();
remove(size() - 1)
…

Evaluation

java.util.Stack

pop() remove(size() - 1)

push(0);pop();
remove(size() - 1)

push(0);pop(); push(0);pop();
remove(size() - 1)
…

Evaluation

GraphStream

java.util.Stack

graphstream.Path
graphstream.Edge
graphstream.Node
graphstream.MultiNode
graphstream.Vector2
graphstream.Vector3

15

2
9
5
5
5
6

methods # eqs

45

5
20
12
12
21
22

47 137

How effective is the search-based synthesis?

How efficient is the search-based synthesis?

Evaluation

How effective is the search-based synthesis?

How efficient is the search-based synthesis?

Evaluation

Recall

SBES

Universe

Effectiveness of Search-based Synthesis

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

0.87

0.89

1.00

1.00

1.00

1.00

0.80

Recall

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.00

1.00

1.00

1.00

1.00

0.84

Recall (on 30 runs)

Effectiveness of Search-based Synthesis

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.00

1.00

1.00

1.00

1.00

0.84

Recall

 90.5%

(on 30 runs)

Effectiveness of Search-based Synthesis

Precision

SBES

Universe

True
Positives

False
Positives

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

0.81

0.88

1.00

1.00

0.96

0.73

0.92

Precision

Effectiveness of Search-based Synthesis

Effectiveness of Counterexamples

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0 50 100 150 200 250

36

34

87

22

201

40

13

26

50

36

False Positives Discarded

How efficient is the search-based synthesis?

How efficient is the search-based synthesis?

Evaluation

Efficiency of Search-based Synthesis

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

Time (seconds)
0 10 20 30 40 50 60

6

7

8

6

6

15

11

18

15

20

16

16

20

18

Synthesis Counterexample

Automatic Recovery from Runtime Failures
Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Manual identification
of equivalence

… is the main cost!

pop()

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Execution scenarios

Search-based Synthesis of Equivalences

Tim
eo
ut
!

Stack
Automatic Recovery from Runtime Failures

Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Manual identification
of equivalence

… is the main cost!

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

0.81

0.88

1.00

1.00

0.96

0.73

0.92

1.00

1.00

1.00

1.00

1.00

1.00

0.84

Recall Precision(on 30 runs)

Effectiveness of Search-based Synthesis

pop()

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Execution scenarios

Search-based Synthesis of Equivalences

Tim
eo
ut
!

Stack
Automatic Recovery from Runtime Failures

Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Manual identification
of equivalence

… is the main cost!

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

0.81

0.88

1.00

1.00

0.96

0.73

0.92

1.00

1.00

1.00

1.00

1.00

1.00

0.84

Recall Precision(on 30 runs)

Effectiveness of Search-based Synthesis Efficiency of Search-based Synthesis

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

Time (seconds)
0 10 20 30 40 50 60

6

7

8

6

6

15

11

18

15

20

16

16

20

18

Synthesis Counterexample

pop()

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Execution scenarios

Search-based Synthesis of Equivalences

Tim
eo
ut
!

Stack
Automatic Recovery from Runtime Failures

Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Manual identification
of equivalence

… is the main cost!

Automatic Recovery from Runtime Failures
Antonio Carzaniga⇤ Alessandra Gorla† Andrea Mattavelli⇤ Nicolò Perino⇤ Mauro Pezzè⇤

⇤University of Lugano
Faculty of Informatics
Lugano, Switzerland

†Saarland University
Computer Science

Saarbrücken, Germany

Abstract—We present a technique to make applications re-
silient to failures. This technique is intended to maintain a
faulty application functional in the field while the developers
work on permanent and radical fixes. We target field failures
in applications built on reusable components. In particular, the
technique exploits the intrinsic redundancy of those components
by identifying workarounds consisting of alternative uses of
the faulty components that avoid the failure. The technique is
currently implemented for Java applications but makes little or
no assumptions about the nature of the application, and works
without interrupting the execution flow of the application and
without restarting its components. We demonstrate and evaluate
this technique on four mid-size applications and two popular
libraries of reusable components affected by real and seeded
faults. In these cases the technique is effective, maintaining
the application fully functional with between 19% and 48%
of the failure-causing faults, depending on the application. The
experiments also show that the technique incurs an acceptable
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and then deployed
with faults, and those faults may cause field failures, and this
happens despite the best effort and the rigorous methods of
developers and testers. Furthermore, even when detected and
reported to developers, field failures may take a long time to
diagnose and eliminate. As a perhaps extreme but certainly not
unique example, consider fault n. 3655 in the Firefox browser,
which was reported first in March 1999 and other times over
the following ten years, and is yet to be corrected at the
time of writing of this paper (summer 2012).1 The prevalence
and longevity of faults in deployed applications may be due
to the difficulty of reproducing failures in the development
environment or more generally to the difficulty of diagnosing
and eliminating faults at a cost and with a schedule compatible
with the objectives of developers and users.

At any rate, dealing with faults that escape the testing
environment seems to be a necessity for modern software, and
in fact, several lines of research have been devoted to avoiding
or at least mitigating the effects of faults in deployed software.
A primary example is software fault tolerance. Inspired by
hardware fault-tolerance techniques such as RAID [1], soft-
ware fault tolerance is based on the idea of producing and
executing different versions of an application (or parts of it) so
as to obtain a correct behavior from the majority (or possibly
even just one) of the versions [2], [3].

1https://bugzilla.mozilla.org/show bug.cgi?id=3655

The problem with these fault-tolerance techniques is that
they are expensive and are also considered ineffective due
to correlation between faults. Therefore, more recent tech-
niques attempt to avoid or mask failures without incurring the
significant costs of producing fully redundant code. Among
them, some address specific problems such as inconsistencies
in data structures [4], [5], configuration incompatibilities [6],
infinite loops [7], security violations [8], and non-deterministic
failures [9], [10], while others are more general but require
developers to manually write appropriate patches to address
application-specific problems [11], [12].

In this paper we describe a technique intended to incur
minimal costs and also to be very general. The technique
works opportunistically and therefore can not offer strict
reliability guarantees. Still, short of safety-critical systems, our
goal is to support a wide range of applications to overcome
a large class of failures. Similarly to other techniques, the
main ingredient we plan to use is redundancy. In particular,
we propose to exploit a form of redundancy that is intrinsic
in modern component-based software systems. We observe
that modern software and especially reusable components are
designed to accommodate the needs of several applications and
therefore to offer many variants of the same functionality. Such
variants may be similar enough semantically, but different
enough in their implementation, that a fault in one operation
might be avoided by executing an alternative variant of the
same operation. The automatic selection and execution of a
correct variant (to avoid a failure of a faulty one) is what we
refer to as an automatic workaround.

In prior work we have developed this notion of au-
tomatic workarounds by showing experimentally that such
workarounds exist and can be effective in Web applica-
tions [13]. We initially focused on Web applications because
they allowed us to make some simplifying assumptions re-
garding the state and execution flow of the application. In
particular, Web applications consist of a user interface built
and modified by event-driven procedures that always run to
completion, and are also essentially stateless (the state of the
application is typically held on the server side). With this
execution model, it is relatively easy to apply an automatic
workaround by changing the code of one or more procedures
and simply re-executing them (by reloading the page). Web
applications also simplify the failure-detection problem, since
the user can be assumed to detect failures and explicitly
request workarounds.

Exploiting Equivalence

Automatic Workarounds for Web Applications

Antonio Carzaniga, Alessandra Gorla, Nicolò Perino, and Mauro Pezzè
∗

Faculty of Informatics
University of Lugano
Lugano, Switzerland

{antonio.carzaniga|alessandra.gorla|nicolo.perino|mauro.pezze}@usi.ch

ABSTRACT
We present a technique that finds and executes workarounds
for faulty Web applications automatically and at runtime.
Automatic workarounds exploit the inherent redundancy of
Web applications, whereby a functionality of the application
can be obtained through different sequences of invocations
of Web APIs. In general, runtime workarounds are applied
in response to a failure, and require that the application re-
main in a consistent state before and after the execution of
a workaround. Therefore, they are ideally suited for inter-
active Web applications, since those allow the user to act
as a failure detector with minimal effort, and also either
use read-only state or manage their state through a trans-
actional data store. In this paper we focus on faults found
in the access libraries of widely used Web applications such
as Google Maps. We start by classifying a number of re-
ported faults of the Google Maps and YouTube APIs that
have known workarounds. From those we derive a number of
general and API-specific program-rewriting rules, which we
then apply to other faults for which no workaround is known.
Our experiments show that workarounds can be readily de-
ployed within Web applications, through a simple client-side
plug-in, and that program-rewriting rules derived from ele-
mentary properties of a common library can be effective in
finding valid and previously unknown workarounds.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Error handling and recovery

General Terms
Reliability, Design

Keywords
Automatic Workarounds, Web Applications, Web API

∗Mauro Pezzè is also with the University of Milano-Bicocca.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

1. INTRODUCTION
Application programming interfaces (APIs) for popular

Web applications like Google Maps and Facebook increase
the popularity of such applications, but also introduce new
problems in assessing the quality of the applications. In
fact, third-party developers can use Web APIs in many dif-
ferent ways and for various purposes, and applications can
be accessed by many users through different combinations
of browsers, operating systems, and connection speeds. This
leads to a combinatorial explosion of use cases, and therefore
a growing number of potential incompatibilities that can be
difficult to test with classic approaches, especially within
tight schedules and constrained budgets.

Furthermore, failures caused by faults in common APIs
can affect a large number of users, and fixing such faults re-
quires a time consuming collaboration between third-party
developers and API developers. In order to overcome these
open problems in the absence of permanent fixes, users and
developers often resort to workarounds. However, although
many such workarounds are found and documented in on-
line support groups, their descriptions are informal, and
their application is carried out on a case-by-case basis and
often with non-trivial ad-hoc procedures.

In this paper we propose a technique to find and execute
workarounds automatically and at runtime in response to
failures caused by faults in the libraries that the application
depends on. Automatic workarounds do not fix the faults in
the API code, but rather provide a temporary solution that
masks the effects of the faults on applications.

We start from the supposition that libraries are often in-
trinsically redundant, in the sense that they provide several
different ways to achieve the same results, and that this re-
dundancy can lead to effective workarounds. For example,
changing an item in a shopping list, may be equivalent to
deleting the item and then adding a new one. So, to avoid a
failing edit operation, one could replace that edit operation
with a suitable sequence of delete and add operations. This
assumption, that large software systems contain significant
portions of functionally equivalent code, is supported by ev-
idence from a recent study on redundant code in the Linux
Kernel [13], and is also confirmed by our study of Web APIs
that we report in this paper.

Based on this intrinsic redundancy, we propose a tech-
nique to build and execute, at runtime and in response to a
failure, alternative sequences of operations whose intended
behavior is equivalent to that of the failing sequence. We
denote such sequences as equivalent sequences. We then call

On the Enhancement of BPEL Engines for Self-Healing Composite Web Services

Sattanathan Subramanian1, Philippe Thiran2, Nanjangud C. Narendra3,
Ghita Kouadri Mostefaoui4, and Zakaria Maamar5

1INRIA Saclay-Île-de-France, Orsay, France, sattanathan.subramanian@inria.fr
2Precise, University of Namur, Namur, Belgium, pthiran@fundp.ac.be

3IBM India Research Lab, Bangalore, India, narendra@in.ibm.com
4Comlab, Oxford University, Oxford, UK, ghitak@gmail.com

5College of Information Technology, Zayed University, Dubai, UAE, zakaria.maamar@zu.ac.ae

Abstract

The dynamic nature of the Internet poses various challenges
to the successful execution of composite Web services. Fail-
ures are samples of these challenges. It needs to be ad-
dressed for the smooth progress of Web service composition.
Unfortunately, the de facto standard for modeling composi-
tion namely BPEL is not equipped with mechanisms that let
Web services ”heal” themselves in case of failures. In addi-
tion, current BPEL engines lack appropriate facilities that
permit satisfying self-healing requirements like handling in
a transparent way functional failures of component Web ser-
vices during runtime. This paper presents an approach for
enhancing BPEL engines with such facilities. This enhance-
ment happens through the following steps: identify possible
categories of failures, develop solutions to automatically
recover from these failures, and suggest architectural ex-
tensions to BPEL engines (with focus on ActiveBPEL) to
support these solutions. We also present a proof-of-concept
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healing, Web service.

1. Introduction

Modern B2B applications requirements stress the need
to compose Web services, which results in developing com-
posite Web services. Simply put, composition is about
making independent Web services interact with one an-
other according to a specific business logic [7]. Differ-
ent specification languages of composition exist including
the Business Process Execution Language (BPEL) [1] and
the Web Service Choreography Interface (WSCI) [4]. Al-
though BPEL is the de facto standard for Web services
composition, current engines that implement BPEL speci-
fications suffer from a major limitation. Indeed these en-
gines do not allow changes to take place in the middle of
a composition specification execution-stream. This makes
designers envisage alternatives to address all possible fail-

ures, which quickly turns out to be cumbersome and quite
impossible [15]. In this paper, we show how a BPEL en-
gine such as ActiveBPEL 1 can be enhanced with facilities
to be qualified in this paper by self-healing. Such facili-
ties permit overseeing Web services execution, identifying
corrective strategies in case of failures, and implementing
these strategies.

In a dynamic environment such as the Internet, applica-
tions built around software components for example Web
services can be subject to unexpected failures. By unex-
pected, we mean failures for which recovery strategies were
not planned at design time, even if the risk of failure occur-
rence was identified and probably minimized. Nowadays,
developers are pressured and put on the front line of satisfy-
ing the promise of Web services’ providers to deliver a new
generation of B2B applications. This pressure makes devel-
opers release applications without complete testing, relying
on the next versions to fix all the reported failures. In gen-
eral, failures can be unexpected for developers but not for
software systems. A software system can handle all kinds
of failures by just throwing exceptions that disrupt its nor-
mal functioning. In [9], Chan et al. mention that failures
can be detected by software, since most failures are capable
of producing some error message or undesired result. Un-
expected failures could have a severe impact on businesses
by making them suspend operation for a couple of days and
sometimes weeks. In [12], He reports on the importance of
failure recovery in Web services applications by describing
a real incident that affected eBay. The company lost $5 mil-
lions due to a 22-hour server-outage in April 2002. In this
paper we identify the necessary steps to take in order to en-
hance Web services with self-healing capabilities, so they
could become ”immune” to unexpected failures. Failures
mean here results of events, such as resource unavailabil-

1www.active-endpoints.com/open-source-active-bpel-Intro.htm

International Symposium on Applications and the Internet

978-0-7695-3297-4/08 $25.00 © 2008 IEEE
DOI 10.1109/SAINT.2008.12

33

Cross-Checking Oracles
from Intrinsic Software Redundancy

Antonio Carzaniga

University of Lugano

Switzerland

antonio.carzaniga@usi.ch

Alberto Goffi

University of Lugano

Switzerland

alberto.goffi@usi.ch

Alessandra Gorla

Saarland University

Germany

gorla@st.cs.uni-

saarland.de

Andrea Mattavelli

University of Lugano

Switzerland

andrea.mattavelli@usi.ch

Mauro Pezzè

University of Lugano

Switzerland

University of Milano-Bicocca

Italy

mauro.pezze@usi.ch

ABSTRACT
Despite the recent advances in automatic test generation,
testers must still write test oracles manually. If formal speci-
fications are available, it might be possible to use decision
procedures derived from those specifications. We present a
technique that is based on a form of specification but also
leverages more information from the system under test. We
assume that the system under test is somewhat redundant,
in the sense that some operations are designed to behave
like others but their executions are di↵erent. Our experience
in this and previous work indicates that this redundancy
exists and is easily documented. We then generate oracles by
cross-checking the execution of a test with the same test in
which we replace some operations with redundant ones. We
develop this notion of cross-checking oracles into a generic
technique to automatically insert oracles into unit tests. An
experimental evaluation shows that cross-checking oracles,
used in combination with automatic test generation tech-
niques, can be very e↵ective in revealing faults, and that
they can even improve good hand-written test suites.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and Debug-
ging

General Terms
Verification

Keywords
Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

1. INTRODUCTION
Test oracles discriminate successful from failing executions

of test cases. Good oracles combine simplicity, generality,
and accuracy. Oracles should be simple to write and straight-
forward to check, otherwise we would transform the problem
of testing the software system into the problem of testing
the oracles. They should also be generally applicable to the
widest possible range of test cases, in particular so that they
can be used within automatically generated test suites. And
crucially, they should be accurate in revealing all the faulty
behaviors (completeness, no false negatives) and only the
faulty ones (soundness, no false positives).

Test oracles are often written manually on a case-by-case
basis, commonly in the form of assertions, for example JUnit
assertions.1 Such input-specific oracles are usually simple
and e↵ective but they lack generality. Writing such oracles for
large test suites and maintaining them through the evolution
of the system can be expensive. Writing and maintaining
such oracles for large automatically generated test suites may
be practically impossible.
It is possible to also generate oracles automatically, even

though research on test automation has focused mostly on
supporting the testing process, creating sca↵olding, managing
regression test suites, and generating and executing test
cases, but much less on generating oracles [7, 27]. Most of
the work on the automatic generation of oracles is based on
some form of specification or model. Such oracles are very
generic, since they simply check that the behavior of the
system is consistent with the prescribed model. However,
their applicability and quality depend on the availability
and completeness of the models. For example, specification-
based oracles are extremely e↵ective in the presence of precise
specifications, such as protocol specifications [21], but they
are not easily applicable to many other systems that come
with informal and often incomplete specifications.

Another classic approach to obtain generic oracles is to use
what Weyuker calls a pseudo-oracle [46, 17], that is, another
program intended to behave exactly as the original. The
actual oracle requires the execution of the two programs
with the same input, followed by a comparison between
the results of the two executions. The production of an

1http://junit.org

Metamorphic Testing and Beyond *

T. Y.Chen F.-C. Kuo

School Information Technology
University Technology

Hawthorn, Victoria 3122, Australia
{tchen, dkuo,

Department Computer Science and Information Systems
The University Hong Kong

Road, Hong Kong
tse csis. hku. hk

T. H. Tse Zhi Quan Zhou

Abstract

When testing a program, correctly executed test cases
are seldom explored even though they may carry
useful information. Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the target function. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future research directions are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless and thus discarded by testers or merely retained

‘This research is supported in part by a discovery grant of the
Australian Research Council (Project No. a grant of the
Research Grants Council of Hong Kong, and a of the University of
Hong Kong.

Contact author.

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,

The oracle problem is “one of the most difficult tasks
in software testing” but is often ignored in the testing
theory [

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

Manual identification
of equivalence

… is the main cost!

pop()

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop();

Stack s = new Stack();
s.push(-4);
Object ret = s.pop();

Execution scenarios

Search-based Synthesis of Equivalences

Tim
eo
ut
!

Stack

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

0.0 0.2 0.4 0.6 0.8 1.0

0.81

0.88

1.00

1.00

0.96

0.73

0.92

1.00

1.00

1.00

1.00

1.00

1.00

0.84

Recall Precision(on 30 runs)

Effectiveness of Search-based Synthesis Efficiency of Search-based Synthesis

Stack

Path

Edge

Node

MultiNode

Vector2

Vector3

Time (seconds)
0 10 20 30 40 50 60

6

7

8

6

6

15

11

18

15

20

16

16

20

18

Synthesis Counterexample

star.inf.usi.ch/sbes

