Universita Faculty

della of Informatics Software
Svizzera " " Testing and
italiana ‘ Analysis

Research group

Search-based Synthesis of
Equivalent Method Sequences

Alberto Goffi, Andrea Mattavelli, Mauro Pezze
University of Lugano - Switzerland

Alessandra Gorla
Saarland University - Germany

Paolo Tonella
Fondazione Bruno Kessler - Italy

Software Is Redundant

‘ ‘ A system Is redundant when 1t Is able
to perform equivalent functionalities
by executing different code.

Software 1s Redundant

‘ ‘ A system Is redundant when 1t is able
to perform
by executiig different code.

compute identical results

lead to identical states

~quivalence In Software

Java Stack

Stack s = new Stack();

/7. ..
//remove the element on top of the stack

s.pop();

~quivalence In Software

Java Stack

Stack s = new Stack(Q);

/7. ..
//remove the element on top of the stack

s.pop();
s.remove(size() - 1);
s.removeElementAt(size() - 1);

~quivalence In Software

Java Stack

Stack s = new Stack();
/7. ..
//remove the element on top of the stack

s.pop();
s.remove(size() - 1);
s.removeElementAt(size() - 1);

Joda-Time

DateTime t = new DateTime();

/7. ..

//get the beginning of the day for time t

DateTime beginDay = t.millisOfDay().withMinimumValue();

~quivalence In Software

Java Stack

Stack s = new Stack(Q);
//. ..
//remove the element on top of the stack
s.pop();
s.remove(size() - 1);
s.removeElementAt(size() - 1);

Joda-Time

DateTime t = new DateTime();

/7. ..

//get the beginning of the day for time t

DateTime beginDay = t.millisOfDay().withMinimumValue();
= t.toDateMidnight().toDateTime();
= t.withTimeAtStartOfDay();

CXP

lorting

:quwa

lence

Automatic Recq

Antonio Carzaniga® Alessandra G

*University
Faculty of Ii
Lugano, S

Abstract—We present a technique to make a
silient to failures. This technique is intended f
faulty application functional in the field while
work on permanent and radical fixes. We targe
in applications built on reusable components. In
technique exploits the intrinsic redundancy of tho:
by identifying workarounds consisting of altern)
the faulty components that avoid the failure. Th
currently implemented for Java applications but
no assumptions about the nature of the applicati
without interrupting the execution flow of the a
without restar its components. We demonstratd
this technique on four mid-size applications and
libraries of reusable components affected by red
faults. In these cases the technique is effective
the application fully functional with between 1
of the failure-causing faults, depending on the ap)
experiments also show that the technique incurs
runtime overhead in all cases.

I. INTRODUCTION

Software systems are sometimes released and
with faults, and those faults may cause field failf
happens despite the best effort and the rigorouf
developers and testers. Furthermore, even when|
reported to developers, field failures may take
diagnose and eliminate. As a perhaps extreme bul
unique example, consider fault n. 3655 in the Firl
which was reported first in March 1999 and ot
the following ten years, and is yet to be co
time of writing of this paper (summer 2012)." T}
and longevity of faults in deployed applicationd
to the difficulty of reproducing failures in the
environment or more generally to the difficulty
and eliminating faults at a cost and with a scheduf
with the objectives of developers and users.

At any rate, dealing with faults that escap
environment seems to be a necessity for modern
in fact, several lines of research have been devot
or at least mitigating the effects of faults in depl:
A primary example is software fault tolerance
hardware fault-tolerance techniques such as RA
ware fault tolerance is based on the idea of p|
executing different versions of an application (or|
as to obtain a correct behavior from the majorit;
even just one) of the versions [2], [3].

Thttps://bugzilla.mozilla.org/show_bug.cgi?id=3655

Automatic Work

Antonio Carzaniga, Aless|

{antonio.carzanigalalessg

ABSTRACT

We present a technique that finds and e
for faulty Web applications automatically and

Automatic workarounds exploit the inherent red
Web applications, whereby a functionality of the
can be obtained through different sequences of
of Web APIs. In general, runtime workarounds
in response to a failure, and require that the apy
main in a consistent state before and after the

a workaround. Therefore, they are ideally suit]
active Web applications, since those allow the
as a failure detector with minimal effort, and
use read-only state or manage their state throyl
actional data store. In this paper we focus on f
in the access libraries of widely used Web appliq
as Google Maps. We start by classifying a nw
ported faults of the Google Maps and YouTub

have known workarounds. From those we derive

general and APLspecific program-rewriting rule
then apply to other faults for which no workarour]
Our experiments show that workarounds can bej
ployed within Web applications, through a simpl
plug-in, and that program-rewriting rules derive
mentary prop of a common library can be
finding valid and previously unknown workarou]

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and D|
Error handling and recovery

General Terms

Reliability, Design

Keywords

Automatic Workarounds, Web Applications, We

*Mauro Pezzé is also with the University of Milaj

Permission to make digital or hard copies of all or part of}
sonal or classroom usc is granted without fee provided
not made or distributed for profit or commercial advantage
bear this notice and the full citation on the first page. To copy
.10 post on servers o to redistribute o lists, require3
nission and/or a fee.
3 er 7-11,2010, Santa Fe, New Mexico, USA
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

Internation|

On the Enhancement of BPH

Sattanathan Subram|
Ghita Ko

INRIA Saclay-fle{
2Precise, Univi

“IBM India i

“Comlab,

5College of Information Te

Abstract

The dynamic nature of the Internet poses vai
1o the successful execution of composite Wel
ures are samples of these challenges. It
dressed for the smooth progress of Web servi
Unfortunately, the de facto standard for mog
tion namely BPEL is not equipped with med|
Web services "heal” themselves in case of f
tion, current BPEL engines lack approprial
permit satisfying self-healing requirements
a transparent way functional failures of com|
vices during runtime. This paper presents
enhancing BPEL engines with such facilities
ment happens through the following steps: i
categories of failures, develop solutions te
recover from these failures, and suggest a
tensions to BPEL engines (with focus on
support these solutions. We also present a p
prototype that illustrates our ideas.
Keywords. BPEL, Composition, Self-healir

1. Introduction

Modern B2B
to compose Web services, which results in d
posite Web services. Simply put, comp
making independent Web services interaq
other according to a specific business log
ent specifi languages of
the Business Process Execution Language
the Web Service Choreography Interface (
though BPEL is the de facto standard fof
composition, current engines that impleme}
fications suffer from a major limitation. I
gines do not allow changes to take place i
a i i cution-strea
designers envisage alternatives to address 4

978-0-7695-3297-4/08 $25.00 © 2008 IEEE.
DO 10.1109/SAINT.2008.12

Cros|
from Intrin

Antonio Cal
University of

. Switzerl
antonio.carzan

Alessandra Gorla
Saarland University
Germany
gorla@st.cs.uni- E

saarland.de

ABSTRACT

Despite the recent advances in automatic tes
testers must still write test oracles manually. If
fications are available, it might be possible to
procedures derived from those specifications.
technique that is based on a form of specificat
leverages more information from the system un)
assume that the system under test is somewh:
in the sense that some operations are designg
like others but their executions are different. O
in this and previous work indicates that this
s and is easily documented. We then generd
ng the execution of a test with the
which we replace some operations with redunds
develop this notion of cross-checking oracles i
i insert oracles into uf
experimental evaluation shows that cros
used in combination with automatic test gen
niques, can be very effective in revealing faul
they can even improve good hand-written test

-che

Categories and Subject Descriptors
2.4 [Software Engineering]: Software/Pr(

D
cation; D. [Software Engineering]: Testing

ging

General Terms

Verification

Keywords

Redundancy, test oracles, oracle generation

Permission to make digital or hard copies of all or part
personal or classroom use is granted without fee providet
not made or distributed for profit or commercial advantage]
otice and the full citation on the first page. To cof
to post on servers or to redistribute to lists, requi
permission and/or a fee.

ICSE *14, May 31 — June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2756-5/14/05 ...$15.00.

Metamorphic Testing and Beyond *

T.Y.Chen, F.-C.Kuo™,

T.H. Tse*§

Zhi Quan Zhou

1 School of Information Technology

Swinburne University of Technology

Hawthorn, Victoria 3122, Australia
Email: {tchen, dkuo, zhzhou} @it.swin.edu.au

4 Department of Computer Science and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong

Email: tse@ csis

Abstract

When testing a program, correctly executed test cases
are seldom explored further, even though they may carry
useful information. ~ Metamorphic testing proposes to
generatefollow-up test cases to check important properties
of the targetfunction. It does not need a human oracle
for output prediction and comparison. In this paper, we
highlight the basic concepts of metamorphic testing and
some interesting extensions in the areas of program testing,
proving, and debugging. Future researchdirections are also
proposed.

Keywords: Follow-up test cases, metamorphic testing,
semi-proving, successful test case, test case selection
strategy, testing oracle

1. Introduction

It is impractical, if not impossible, to test a program
with all conceivable inputs [1]. Instead, we should aim at
selecting test cases with higher probabilities of revealing
program failures. Hence, a lot of research has been done
on developing test case selection strategies.

A successful test case is one on which the program
computes correctly. Since successful test cases do not
reveal any failure, they are conventionally considered
useless [22] and thus discarded by testers or merely retained

“This research is supported in part by a discovery grant of the
Australian Research Council (Project No. DP0345147), a grant of the
Research Grants Council of Hong Kong, and a grent of the University of
Hong Kong

¥ Contactauthor.

- hhku.hk

for reuse in regression testing later. We note, however,
that successful test cases do carry useful information, albeit
seldom explored. Fault-based testing [21], for example, is
a significant attempt to make use of such information. In
fault-based testing, if a program has successfully passed all
the test cases, then it can be guaranteed to be free from
certain types of faults. Unfortunately, most testing methods
are not fault-based, and most test cases are executed
successfully. Thus, some valuable information that results
from program testing will remain buried and unused.

Another limitation of software testing is the oracle
problem [23]. An oracle is a mechanism against which
people can decide whether the outcome of the program
on test cases is correct. In some situations, the oracle
is not available or is too expensive to be applied [23]
In cryptography systems, for example, large number
arithmetic is usually involved. It is very expensive to
verify the correctness of a computed result. Other examples
include deciding the equivalence between the source and
object codes when testing a compiler; and deciding the
correctness of an output when testing a program that
performs numerical integration. Furthermore, even when
manual prediction and comparison of testing results are
possible, they are often time consuming and error prone [18,
20). The oracle problem is “one of the most difficult tasks
in software testing” [20] but is often ignored in the testing
theory [18].

A metamorphic testing (MT) method has been pro-
posed [4] with a view to making use of the valuable
information in successful test cases. It does not depend on
the availability of an oracle. It proposes to generate follow-
up test cases based on metamorphic relations, or properties
among inputs and outputs of the target function. In this

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP'04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

COMPUTER
SOCIETY

-xplorting Equivalence

Manual identification
of equivalence

-xplorting Equivalence

Manual identification
of equivalence

... IS the main cost!

Automatic Synthesis of

Automatic Synthesis of Equivalences

S,

Java o0 int el = s.peek();
Stack int index = s.size();
pop() ——p ~——— index = index - 1;

s.remove(index);
return el;

Automatic Synthesis of Equivalences

S,

Java o0 int el = s.peek();
Stack int index = s.size();
pop() ——p ~——— index = index - 1;

s.remove(index);

/ return el;

Execution scenarios

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop(Q);

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

Automatic Synthesis of Equivalences

S,
= Synthesis
Java

Stack oo

pop() —p —P

/

Execution scenarios

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop(Q);

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

Automatic Synthesis of Equivalences

«
2 .
= Synthesis Counterexample
Java

Stack ®o o0

pop() —P» —P —P

/

Execution scenarios

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop(Q);

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

Automatic Synthesis of Equivalences

«
2 .
= Synthesis Counterexample
Java

Stack ®o o0

pop() —P» —P —P

/ /

Execution scenarios

Stack s = new Stack();

s.push(1); &
s.push(1);

Object ret = s.pop(Q);

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

Automatic Synthesis of Equivalences

«
2 .
= Synthesis Counterexample
Java

Stack ®o o0

pop() —P» —P —P

/

Execution scenarios

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop(Q);

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

Automatic Synthesis of Equivalences

«
2 .
= Synthesis Counterexample
Java

Stack oo o0

pop() —P» —P —P

/ ¥

Execution scenarios
Stack s = new Stack();

o)

s.push(1);

s.push(1);

Object ret = s.pop(); \::::/
Stack s = new Stack();

s.push(-4);

Object ret = s.pop(Q);

Automatic Synthesis of Equivalences

S, .

= Synthesis e Counterexample
Java | i N
Stack (X / \\\oo

pop() —P / —P

/c
I
\

Execution scenarios
Stack s = new Sta#;
s.push(1); N S —

—
© wmmD

s.push(1); \\\
Object ret = s.pop(); \
Stack s = new Stack(); D

s.push(-4);
Object ret = s.pop();

Search-based Synthesis of Equivalences

«
w2 .
= Synthesis Counterexample
Java

Stack ®o o0

pop() ———P —~—P - S
K
(o)

| %

/ /o
Execution scenarios

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop(Q);

e

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

o

Search-based Synthesis of Equivalences

4
= EVMSUITE EVa=SUITE

Java
Stack oo o0

pop() —P» —P —P

/ A
Execution scenarios

Stack s = new Stack();

s.push(l); e
s.push(1);

Object ret = s.pop(Q);

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

~quivalence Synthesis as [CG Problem

EVarSUITE public void method_under_test() {
1f (C condition) {
// equivalent!

¥
¥

~quivalence Synthesis as [CG Problem

EVarSUITE public void method_under_test() {
1f (condition) {
// equivalent!

¥
¥

On all execution scenarios:

e compute identical results
e |ead to identical object states

~quivalence Synthesis as [CG Problem

EVarSUITE public void method_under_test() {
1f (C condition) {
L // equivalent!

¥
¥

Execution scenarios

Stack s = new Stack(Q);
s.push(1);
s.push(1);

pop() it ret = s.popQ;

Stack s = new Stack();
s.push(-4);

o ret=spop0;

Stack

S,
e

~quivalence Synthesis as 1 CG Problem

EVarSUITE public void method_under_test() {
1f (condition) {

AN // equivalent!

¥
¥

!

pop()

<
Java

Stack

~quivalence Synthesis as 1 CG Problem

EVarSUITE public void method_under_test() {
essmmm @ ‘(e EEOES-Ems

)1

// equivalent!

!

pop()

Java
Stack

~quivalence Synthesis as 1 CG Problem

EVarSUITE public void method_under_test() {

B - G - D |

// quivalﬁy

!

pop()

Java
Stack

~quivalence Synthesis as 1 CG Problem

EVarSUITE public void method_under_test() {

N - s - D {

// equivalent!

¥

H }

~quivalence Synthesis as 1 CG Problem

EVarSUITE public void method_under_test() {

N - s - D {

// equivalent!

¥

\TJ ;

remove(Q)

<
Java

Stack

~quivalence Synthesis as 1 CG Problem
EVarSUITE public void method_under_test() {
L (=8 == 8&
oo 1
D - R I == I H{

// equivalent!

}

remove((a) - -

Java
Stack

~quivalence Synthesis as 1 CG Problem
EVarSUITE public void method_under_test() {
Lf (P10 == [[1778& 01 == R 8&
eon 1
I - (e A -)

// equivalent!

}

remove(®) - -

Java
Stack

Search-based Synthesis of

S,
Java
Stack °o

pop() —p»

/

Execution scenarios

Stack s = new Stack();
s.push(1);
s.push(1);
Object ret = s.pop(Q);

Stack s = new Stack();
s.push(-4);
Object ret = s.pop(Q);

Synthesis

—»

remove(d)

-quivalences

Counterexample

—

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test() {
1f (C condition) {
// counterexample

¥
¥

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test()
1f (condition) {
// counterexample

¥
¥

On one execution scenario:
e compute different results, or

{

e lead to different object states

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test() {
1f (C condition) {

oA // counterexample
2222227272727 7222222727272
?? ?? ?? ?? ?? ?? ?? ?? ?? ??
remove(0) — —
s
Java

Stack

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test() {

1f (= | |
// counterexample
¥
¥
2222222727272 2222222727272
? ?z>?'?? ?'?? ? ?'?? ?'?? ?z>? ?
remove(0) — —
S,
Java

Stack

Counterexample as 1 CG Problem

EVa=SUITE

!

remove(Q)

Java
Stack

public void method_under_test() {

if (=

-0
// countereﬁample

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test() {
1f (| = | |

=) 1

// counterexample

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test() {
1f (| = | |

- D 1

// counterexample

Stack s = new Stack();
s.push(0);
s.push(l);

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test() {
1f (| = | |

e -,)

// counterexample

¥
¥

Stack s = new Stack(); Stack s = new Stack();
s.push(Q); s.push(@);
s.push(1); s.push(1);

intret = s.popQ; int ret = s.remove(®);
Stack s = new Stack();
s.push(0);
s.push(l);

Counterexample as 1 CG Problem

EVarSUITE public void method_under_test() {
1f ([@] '=T1] ||
- - e) 1

// counterexample

¥
¥

| Stack s = new Stack(); Stack s = new Stack();
s.push(Q); s.push(0);
s.push(1); s.push(1);
intret = s.popQ; 10t ret = s.remove(®);
Stack s = new Stack();
s.push(0);
s.push(1);

Search-based Synthesis of Equivalences

«
2 .
= Synthesis Counterexample
Java

Stack oo o0

pop() —P» —P —P
|

/7! remove(0) ‘Z(

Execution scenarios
Stack s = new Stack(); 4ﬁ'

s.push(1);

s.push(1);

Object ret = s.pop(Q);

Stack s = new StackQ); Stack s = new Stack();
s.push(-4); s.push(); s.push(1);

Object ret = s.pop(Q);

Search-based Synthesis of Equivalences

SBES

Search-based Synthesis of
S SBES

Java
Stack e

clear()

._

Execution scenario ”

-quivalences

Search-based Synthesis of
S SBES

Java
Stack e

clear()

._

Execution scenario ” $

® removeAllElements()

-quivalences

Search-based Synthesis of
S SBES

Java
Stack e

clear()

._

Execution scenario ” $

® removeAllElements()

® setS1ze(0)

-quivalences

Search-based Synthesis of Equivalences

S SBES

Java
Stack

clear()

PO
. S e = l]

Execution scenario ” $

® removeAllElements()
® setS1ze(0)

® Collection ¢ = new Collection();
retainAll(c)

~valuation

~valuation

Java.util.Stack

graphstream.Path

graphstream.tdge

D
=
@ sraphstream.Node
D
D
D

graphstream.MultiNode
GraphStream &M nstream.Vector?

ora

nstream.Vector3

~valuation

S,

Java

Java.util.Stack

pop() remove(size() - 1)

~valuation

Java.util.Stack

remove(size() - 1)

push(@);pop();
remove(size() - 1)

~valuation

Java.util.Stack

remove(size() - 1)

push(@);pop();
remove(size() - 1)

push(@) ;pop(); push(@);pop();
remove(size() - 1)

~valuation

=) java.util.Stack
S—

Java

PopO) remove(sizeO - 1)

~valuation

methods # eqs

=) java.util.Stack 15 45
—
Java

sraphstream.Path 2 5

/ sraphstream.Edge 9 20

@ sraphstream.Node > W

sraphstream.MultiNode D W

GraphStream graphstream.Vector2 > 2|

oraphstream.Vector3 6 22

47 137

~valuation

How effective Is the search-based synthesis?

How efficient Is the search-based synthesis?

~valuation

How effective Is the search-based synthesis?

Recall

" Universe
B SBES

—ffectiveness of Search-based Synthesis

 Recall

Stack

Path 1.00
Edge .00
Node 1.00
MultiNode .00
Vector? E

Vector3

1.0

—ffectiveness of Search-based Synthesis

| Recall (on 30 runs)

Stack
Path .00
Edge .00
Node .00
MultiNode .00
Vector2 .00
Vector3 .00

0.0 0.2 0.4 0.6 0.8 1.0

—ffectiveness of Search-based Synthesis

| Recall (on 30 runs)

Stack
Path IOO
I |

Fdge o 1.00
we | 20.5% : éI.OO
MultiNode ™ E IOO
Vector2 IOO
Vector3 IOO

0.0 0.2 0.4 0.6 0.8 1.0

Precision

False

" Universe .
Positives

B SBES

True
Positives

—ffectiveness of Search-based Synthesis

" Precision

Stack
Path
Edge 096
Node I : : : .00
MultiNode .00

Vector?

Vector3

1.0

—flectiveness of Counterexamples

B False Positives B Discarded

Stack
Path

Edge

Node

MultiNode

Vector?2

Vector3

100 150 200 250

~valuation

How efficient Is the search-based synthesis!

—fficiency of Search-based Synthesis

B Synthesis | Counterexample

Stack
1

Path 520

15
6

Edge :
Node 16
MultiNode 20
Vector?2 5
Vector3 | 8
0 | IO 2IO 3IO 4IO 5IO 6IO

Time (seconds)

Exploiting Equivalence

Manual identification
of equivalence

... IS the main cost!

Exploiting Equivalence

Manual identification
of equivalence

... IS the main cost!

Search-based Synthesis of Equivalences
&

= EVMSUITE EViRSUITE

Stack L _\ X

pop() —P - P &
B | o

Execution scenarios \ §

Stack s = new Stack(); N

si.zpush(l); i 4] \

s.push(1); gl
Object ret = s.popQ); = —

\—
Stack s = new Stack(); Q
s.push(-4);
Object ret = s.pop(Q);

Exploiting Equivalence

Manual identification
of equivalence

... iS the main cost!

Effectiveness of Search-based Synthesis

I Recall (on 30 runs) [Precision

0.84

Stack : : : : 092

Path 1.00

1.00
0.96

1.00
1.00

.00
1.00

1.00

Edge
Node
MultiNode
Vector2

Vector3 1.00

0.0 0.2 0.4 0.6 0.8 1.0

Search-based Synthesis of Equivalences

J%" EVaRSUITE EVaRSUITE

Stack L oeo

pop() —P» —p —P &
(o)

——

/

Execution scenarios

Stack s = new Stack();
s.push(1); 4 '
s.push(1);

Object ret = s.pop();

Stack s = new Stack(Q);
s.push(-4);
Object ret = s.pop();

— Q

v

Exploiting Equivalence

Manual identification
of equivalence

... iS the main cost!

Effectiveness of Search-based Synthesis

I Recall (on 30 runs) [Precision

Stack

Path

Edge
Node
MultiNode
Vector2

Vector3

Search-based Synthesis of Equivalences

xS
= EVESUITE

P §
= EVE=SUITE
Stack [X X ‘ [X X%
pop() ~—P» - —» S
—)
o
Execution scenarios § A
Stack s = new StackQ); — - A
s.SSshzl);ne o 4— —— =- ‘
s.push(1); m - —
N —
N

Object ret = s.pop();

Stack s = new Stack(Q);
s.push(-4);
Object ret = s.popQ);

Efficiency of Search-based Synthesis

B Synthesis

[Counterexample
Stack
Path
Edge
Node

MultiNode

Vector2

Vector3

30 40 50 60

Time (seconds)

Exploiting Equivalence Search-based Synthesis of Equivalences

E—v

= EVESUITE EVMSUITE
Stack oo _\ eeo
. . . pop() ~—P» - - >
Manual identification - '6@00
of equivalence f ‘[y“
Execution scenarios A N
Stack s = new StackQ); - Kk
... is the main cost! e B R
=%
[J o
star.inf.usi.ch/sbes
Effecti * * ° es|s
Stack | Stack
Path ;"oo Path
Edge Edge 16
Noce 100 Noce L
0.0 0.2 04 0.6 08 10 0 10 20 30 40 50 60

Time (seconds)

