Intrinsic Redundancy for Reliability and Beyond
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Abstract Software redundancy is an essential mechanism in engineering. Different
forms of redundant design are the core technology of well-established reliability and
fault tolerant mechanisms in traditional engineering as well as in software engineering.
In this paper we discuss intrinsic software redundancy, a type of redundancy that
is not added explicitly at design time to improve runtime reliability, but is natively
present in modern software system due to independent design and development
decisions. We introduce the concept of intrinsic redundancy, discuss its diffusion
and the reasons for its presence in modern software systems, indicate how it can be
automatically identified, and present some current and future applications of such
form of redundancy to produce more reliable software systems at affordable costs.

1 Introduction

Reliability, which is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time [1], is a key property of
engineered products and in particular of software artifacts. Safety critical applications
must meet the high reliability standards required for their field deployment, time-
and business-critical applications must obey strong reliability requirements, everyday
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and commodity products shall meet less stringent, but still demanding customer
requirements.

Reliability exploits runtime mechanisms that prevent or mask failures by relying
on some form of redundancy: redundant implementation that is based on runtime
replicas of the same or similar components to temper the failure of one or more
elements; redundant design that relies on independently designed components with
the same functionality to reduce the impact of faults; redundant information that
replicates information to compensate for corrupted data.

In classic engineering practice, examples of redundant implementations are the
third engine of the McDonnell Douglas DC-10 and MD-11 aircraft, added in the late
sixties to tolerate single engine failures,! The Boeing 777 control system which is
compiled with three different compilers and runs on three distinct processors [49],
the design of Systems-on-a-Chip (SoC), which relies on redundant components,?
the Redundant Array of Independent Disks (RAID) technology that combines mul-
tiple physical disk drive components into a single logical unit [36]. An example of
redundant design in classic engineering is the redundant design practice for building
bridges to prevent localized failures from propagating to the whole bridge struc-
ture [19, 20, 32]. A well-known instance of redundant information is the Hadoop
Distributed File System (HDFS) that improves reliability by replicating data [41].

In software engineering, redundant design is a basic principle of fault-tolerant
approaches, which explicitly add redundancy to tolerate unavoidable faults [43].
Examples of redundant software design are N-version programming modules [13],
rollback and recovery techniques, error-correcting codes and recovery blocks [23, 28,
37, 38]. Redundant design relies on elements explicitly added to the system, which
come with extra costs that limit their applicability.

In this chapter, we discuss a form of redundancy that is present in software
systems independently from reliability issues and that can be exploited with neg-
ligible additional costs to improve software reliability. We refer to such form of
redundancy as intrinsic software redundancy. Figure 1 shows a simple example of
redundant methods in class java.util.Stack: the invocations of methods clear (),
removeAllElements (), and setSize (0) produce the same result (an empty stack)
by executing the different code fragments reported in the figure. The different albeit
equivalent® methods derive from design choices that are independent from reliability
issues, and as such we refer to them as intrinsically redundant methods.

Some recent studies indicate that software systems present many forms of intrinsic
redundancy that is a form of redundancy that derives from design and implementation
decisions that go beyond the explicit choice of adding redundant elements for the
sake of reliability [3, 6,7, 8, 10, 11, 12, 18, 25, 29, 42, 44]. Intrinsic redundancy has
been successfully exploited to improve software reliability [42], build self-healing
systems [3, 7, 8, 10, 44], and generate test oracles [6].

! https://federalregister.gov/a/07-704
2 http://www.iso.org/iso/home/store/catalogue._tc/catalogue_detail htm?csnumber=43464

3 Here and in the whole chapter, we use the term equivalent method to indicate methods that produce
results indistinguishable from an external viewpoint, as discussed in details in Section 2.
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public void clear() {
removeAllElements();
}

W N

5| public synchronized void removeAllElements() {
6| modCount++;

7| //Let gc do its work

8| for (inti=0;i < elementCount; i++)

9 elementData[i] = null;

10| elementCount = 0;

1|}

13| public synchronized void setSize(int newSize) {
14| modCount++;
15| if (newSize > elementCount) {

16 ensureCapacityHelper(newSize);

17| }else{

18 for (inti = newSize ;i < elementCount ; i++) {
19 elementDatali] = null;

20 }

21

22 elementCount = newSize;

23| }

Fig. 1 Sample redundant methods from class java.util.Stack

We discuss the concept of intrinsic redundancy in software systems, argue about
the reasons for its presence, and provide data about the scale of the phenomenon
in Section 2. We investigate the problem of automatically uncovering intrinsic soft-
ware redundancy, and present a search-based approach to automatically identify
redundancy intrinsically present at the method call sequence level in Section 3. We
illustrate how to exploit the redundancy that is intrinsically present in software sys-
tems for producing self-healing systems in Section 4 and for generating semantically
relevant test oracles in Section 5. We identify challenging research problems that
may be effectively addressed by exploiting intrinsic software redundancy, focusing
in particular on the areas of performance optimization and security in Section 6.

2 Intrinsic Software Redundancy

Two different executions are redundant if they produce indistinguishable functional
results from an external viewpoint. For example methods clear (), removeAall-
Elements () and setSize (0) of class java.util.stack in Figure 1 execute dif-
ferent statements and run with different execution time, but produce the same visible
functional result (an empty stack) and are thus redundant. Redundant executions
may differ in the sequence of executed actions as in the case of methods clear (),
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1| map.setCenter(new GLatLng(37, —122), 15)
2| //is equivalent to
3| setTimeout(’map.setCenter(new GLatLng(37, —122), 15)”, 500)

5| map = new GMap2(document.getElementByld("map”));
6| setTimeout("map.setCenter(new GLatLng(37, —122), 15)”, 500);
7| map.openinfoWindow(new GLatLng(37.4, —122), "Hello World!");

Fig. 2 Sample redundant method calls in JavaScript in the presence of multithread clients

removeAllElements () and setSize (0), or simply in the execution order of same
shared actions, as in the case of the code of Figure 2, where set Timeout does not
alter the sequence of executed actions, but may result in different order of execution
with multithreaded clients.*

Redundancy is present in software systems at all abstraction levels, from single
bits to entire software systems. The Cyclic Redundancy Check (CRC) is an example
of redundancy at the bit level. Methods of the same or different classes that produce
the same results, like methods clear (), removeAllElements () and setSize (0),
are examples of redundancy at the method call sequence level. Libraries and services
with overlapping functionality, for instance the log4J° library and the standard Java
class java.util.Logging that largely overlap, are examples of redundancy at the
subsystem and system level.

In this paper we discuss intrinsic redundancy of software systems referring to the
method call sequence level:

e we refer to deterministic object-oriented software systems at the method call
level; the interested reader can find a generalization of the concept of intrinsic
redundancy to non-deterministic systems in Mattavelli’s PhD thesis [33];

e we focus on redundancy intrinsically present in the systems due to independent
design or implementation decisions, and not in redundancy explicitly added at
design time as a first-class design choice like in the case of N-version program-
ming;

e we consider only externally observable functional behavior, ignoring other as-
pects of the executions such as differences in the internal state, data structures,
execution time and performance.

Two methods are redundant if they differ in at least one execution trace and pro-
duce indistinguishable results for all executions. Two execution traces are different
if they differ in at least one event or in their order. Two methods produce indistin-
guishable results if their executions compute the same results and lead to equivalent
states from an external observer’s viewpoint. More precisely, the executions of two
methods m; and my of a class C with inputs i; and #, that produce outputs o and o0,

4 The insertion of a set Timeout is frequently used as workaround for issues in Google Maps.
5 http://logging.apache.org/logdj
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Table 1 Redundant method call sequences in open-source Java systems

System Classes Redundant methods Avg. per class
Apache Ant 213 804 3.80
Apache Lang3 1 45 45.00
Apache Lucene 160 205 1.28
Apache Primitives 16 216 13.50
Canova 95 345 3.63
CERN Colt 27 380 14.07
Eclipse SWT 252 1494 5.93
Google Guava 116 1715 14.78
GraphStream 9 132 14.67
Oracle JDK 2 85 42.50
Joda-Time 12 135 11.25
Trove4] 54 257 4.76
Total 957 5813 6.07

and reach states s1 and s;, respectively, are equivalent if 01 = 0, and no sequence of
calls of methods of class C executed from s; and s, produces different results.

Checking for the diversity of two methods is easy, since we only need to compare
the execution traces and find two different ones; checking for their equivalence is
complex, since it implies demonstrating that all possible executions produce states
that are indistinguishable with any interaction sequence. In Section 3, we present
an automatic approach to infer the likely equivalence of method call sequences,
which is based on heuristics, and as such is an imprecise albeit practical and useful
approximation of equivalence.

Intrinsic redundancy may stem from many design and commercial practices, in-
cluding but not limited to design for reusability, performance optimization, backward
compatibility, and lack of software reuse. Reusable software systems, and in particular
libraries, provide standard application programming interfaces (APIs) that empha-
size flexibility over conciseness. For instance, the popular JQuery library® provides
many alternative methods to display elements in a Web page: show (), animate (),
fadeTo (), fadeIn (). Different albeit observationally equivalent functionalities are
often present due to performance optimizations. For instance the GNU Standard C++
Library implements the basic stable sorting function using the insertion-sort algo-
rithm for small inputs and merge-sort for the general case. Many libraries continue to
offer legacy code to guarantee backward compatibility. For instance, the Java 8 Class
Library contains dozens of deprecated classes and hundreds of deprecated methods
that overlap with the functionality of newer classes and methods.” Time pressure and
cost factors reduce the effectiveness of inter- and intra-project communications and
limit the degree of reuse. Often developers are simply not aware that a functionality
is already available in the system, and implement the same functionality multiple
times [5, 30].

6 http://jquery.com
7 http://docs.oracle.com/javase/8/docs/api/deprecated-list.html
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Intrinsic redundancy is surprisingly widespread in many software systems. Table 1
summarizes the results of our empirical analysis of the presence of intrinsic redun-
dancy that derives from good design for reusability practice in a set of open-source
Java libraries at the intra-class method call sequence level. Table 1 indicates a large
amount of redundant methods (column Redundant methods) within the examined
classes (column Classes), which in turn lead to a considerable quantity of redundant
methods within each class (column Avg. per class). Table 1 reports few summary
data, interested readers can find additional details in [6, 7, 8, 10, 12].

3 Mining Software Redundancy

Identifying redundant method call sequences by manually inspecting the software
systems is an error prone and effort demanding activity. This section suggests that
the intrinsic redundancy of software systems can be automatically identified by an
approach, Search-Based Equivalent Synthesis (SBES), that automatically detects
redundant method call sequences in Java classes [22, 34].

Given a target method of a Java class, SBES synthesizes sequences of method
calls that are redundant to the target method, that is, sequences of method calls
that produce results that are indistinguishable from the results of the target method
while executing different actions. SBES approximates the equivalence of method call
sequences referring to a finite set of execution scenarios. We refer to the method call
sequences that SBES identifies as likely equivalent sequences, since they are proven
equivalent to the target method for the considered finite set of execution scenarios,
but may differ for other unforeseen executions.

Given a method m of a Java class C, SBES incrementally synthesizes candidate
redundant method call sequences to m. For each candidate sequence, SBES then
explores the input space of the candidate sequence, looking for inputs that produce
results different from m. If such inputs are found, SBES discards the candidate
sequence and proceeds with a new candidate. Otherwise, if no input that distinguishes
the candidate sequence from m is found before a given timeout, SBES deems the
sequence as a likely redundant method call sequence of m.

We illustrate SBES referring to method pop () of the java.util.stack class.
SBES starts with an initial scenario that consists of a set of randomly selected test
cases for the target method, for instance the simple test case test01 at lines 1-6 in
Figure 3. It then looks for a sequence of method calls that produces indistinguishable
results with respect to the candidate method for the current scenario. It does so
by exploiting search-based algorithms, and in particular the genetic algorithms
implemented in EvoSuite [17]. In the example, SBES synthesizes the candidate
sequence of method calls at lines 8—12 in Figure 3, which produces the same result
of the target method pop () for the initial scenario.

SBES validates the candidate by looking for inputs that distinguish the candidate
method call sequence from the target method, by exploiting again the genetic algo-
rithms implemented in EvoSuite. In the example, SBES finds the counterexample
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// Initial execution scenario

public void test01() {
Stack<Integer> s = new Stack<>();
s.push(1);
Integer result = s.pop();

AN B W N =

}

8| // First candidate equivalent method call sequence:

9| // stack.remove(0) candidate equivalent to stack.pop()
10| Stack<Integer> s = new Stack<>();

11| s.push(1);

12| Integer result = s.remove(0);

14| // Counterexample

15| Stack<Integer> s = new Stack<>();
16| s.push(2);

17| s.push(1);

18| Integer result = s.pop();

20| // Second candidate equivalent method call sequence:

21| // stack.remove(stack.size() — 1) candidate equivalent to stack.pop()
22| Stack<Integer> s = new Stack<>();

23| int X0 = s.size();

24| int x1 =x0 — 1;

25| Integer result = s.remove(x1)

Fig. 3 Candidate method call sequences, counterexamples and execution scenarios for method
pop () of class java.util.Stack

shown at lines 14-18 in Figure 3, that is, an input that differentiates the results
produced by the candidate method call sequence and the target method. If SBES
finds a counterexample, as in this case, it discards the current candidate method call
sequence, adds the counterexample to the current execution scenario, and iterates,
looking for a new candidate method call sequence indistinguishable from the target
method for the new scenario. By incrementally adding the counterexamples to the
execution scenarios, SBES restricts the search to a smaller set of potential candidates,
thus improving the likelihood of generating method call sequences that are redundant
with respect to the target method.

In the example, SBES synthesizes the new candidate at line 20-25 in Figure 3. The
search for inputs that differentiate the candidate method call sequence from the target
method fails in identifying a counterexample with a timeout. Thus SBES returns
the synthesized sequence as likely redundant to the target method. In the example,
the synthesized sequence is indeed redundant, since it produces results that are
indistinguishable from the target method for every possible input. Our experiments
confirm that most sequences that SBES synthesizes as likely redundant are often
redundant indeed. In general, SBES may iterate several times before finding a likely
redundant sequence. SBES may also fail in synthesizing a new candidate, and in this
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Table 2 Effectiveness of SBES

Redundant  Redundant Methods
System Class

Methods Found by SBES
Oracle JDK Stack 45 32 (71%)
Path 5 5 (100%)
Edge 20 20 (100%)
SingleNode 12 12 (100%)
Graphstream MultiNode 12 12 (100%)
Vector2 21 21 (100%)
Vector3 22 22 (100%)
ArrayListMultimap 18 12 (67%)
ConcurrentHashMultiset 16 6 (38%)
HashBasedTable 13 2 (15%)
HashMultimap 13 13 (100%)
HashMultiset 19 19 (100%)
ImmutableListMultimap 20 2 (10%)
ImmutableMultiset 20 3 (15%)
LinkedHashMultimap 13 12 (92%)
Google Guava % | - {HashMultiset 19 19 (100%)
LinkedListMultimap 17 11 (65%)
Lists 16 15 (94%)
Maps 12 8 (67%)
Sets 25 21 (84%)
TreeBasedTable 17 3 (18%)
TreeMultimap 12 8 (67%)
TreeMultiset 34 34 (100%)
Total 421 312 (74%)

case we terminate the synthesis process and return the set of likely redundant method
call sequences found.

Table 2 summarizes the experimental data reported in Goffi et al. [22] and Mat-
tavelli et al. [34] that confirm the effectiveness of SBES in automatically identi-
fying redundant method call sequences. The table reports the number of redun-
dant method call sequences in the considered classes (column Class) as found by
manually inspecting the code (column Redundant Methods) and the amount and
percentage of automatically identified redundant method call sequences (column
Redundant Methods Found by SBES). As reported in the table, SBES can find a large
amount of redundant method sequences with an average of 74% and a median over
88%, and fails in identifying most of the missing redundancies for technological
limitations of the current prototype implementation that does not satisfactorily deal
with subtle use of some Java constructs.

4 Runtime Failure Recovery

Intrinsic redundancy is exploited in many ways to relieve the effects of faulty
code fragments at different abstraction levels, from single code statements to en-
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tire components. For instance, many approaches exploit redundancy at the service
component level to overcome failures caused by either malfunctioning services
or unforeseen changes in the functionality offered by the current reference imple-
mentation [3, 39, 45]. Other approaches exploit some form of intrinsic redundancy
to automatically patch faulty code at the statement level, for instance LeGoues et
al. [31] and Arcuri et al. [2] use genetic programming to automatically fix faults,
while Sidiroglou-Douskos et al. make use of code fragments that are extracted from
“donor” applications [42]. Automatic runtime code repair techniques patch the code
at runtime to mitigate the effect of failures during the software execution.

In this section we illustrate the use of intrinsic software redundancy to recover
from runtime failures by referring to the Automatic Workaround Approach (AWA),
which exploits intrinsic redundancy at the method call sequence level to auto-
matically recover from failures at runtime [7, 8, 10]. A workaround substitutes
a faulty code fragment with a different redundant code fragment that produces the
same intended behavior while executing different code that avoids the faulty oper-
ations. For example the redundant method call set Timeout (map.setCenter (new
GLatLng(37,122),15),500) shown in Figure 2 can be successfully exploited as
a workaround for map.setCenter (new GLatLng (37,122),15) to solve the now
closed issue 519 of the Google Maps API®

In a nutshell, AWA detects a failure, rolls back to a consistent state, substitutes
the faulty code fragment with a redundant code fragment, and executes the new
code. The AWA key ingredients are: (i) a failure detection mechanism that reveals
failures at runtime, (ii) a save & restore mechanism that rolls back the application to
a consistent state after a failure, and (iii) a healing engine that replaces the failing
code fragment with a redundant fragment.

When dealing with Web applications, AWA focuses on JavaScript libraries and
relies on the stateless nature of classic Web applications to ensure state consistency.
When dealing with Java applications, AWA augments the core healing-engine with
mechanisms to detect failures, and save and restore the state. In the next paragraphs,
we briefly summarize the three main AWA ingredients for both Web and Java applica-
tions. The interested readers can refer to [7] and [8, 10] for details on AWA for Java
programs and Web applications, respectively. We illustrate the approach referring to
AWA successfully exploiting the redundant method calls shown in Figure 2 to heal
the now closed issue 519 of Google Maps API as a running example.

Failure Detection

The AWA failure detection mechanism reveals failures and triggers the AWA healing
engine at runtime. When dealing with Web applications, AWA takes advantage of the
interactive nature of the application, and relies on users who are given an intuitive
way, for instance a browser extension, both to signal undesired outputs and to validate
the behavior of the application after a potential workaround is applied. When dealing

8 https://code.google.com/p/gmaps-api-issues/
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with Java applications, AWA relies on implicit failure detectors such as runtime
exceptions and violations of pre-/post-conditions and invariants. In our experiments
with Web applications we provided users with a button to signal failures.

In the running example, users signal the lack of the expected pop up window for
additional information about the location on the map through a Fix me button that we
added to Google Chrome [9].

Save & Restore

The AWA save and restore mechanism incrementally saves intermediate execution
states to roll back to a consistent state, that is, a state before the occurrence of a
failure. When dealing with Web applications, AWA takes advantage of the stateless
nature of the client side, assuming that the JavaScript code executed on the client
side implements stateless components, and simply reloads the page without worrying
about possible side-effects on the state of the application. When dealing with Java
applications, the save and restore mechanism periodically saves the execution states,
and must find a good compromise for the frequency. Saving operations should not be
too frequent, to limit the overhead, and not too sporadic either, since they may also
cover /O operations that may be difficult or impossible to restore. AWA identifies
code regions that include redundant code—and that can thus be fixed with automatic
workarounds—and saves the state before executing these regions. In principle, these
code regions may extend over sections of the application at any level of granularity,
in practice they usually extend within a method body.

Healing Engine

The AWA healing engine executes code that is redundant with respect to the code
fragment likely responsible for the detected failure, aiming to restore a correct
execution. In general, the AWA healing engine iteratively restores the state of the
application to a previously saved checkpoint and executes a code fragment which is
redundant with respect to the code that is a suspect responsible of the failure, until
either the failure does not occur or the available redundant fragments are exhausted.
If the failure does not occur after the healing action, AWA successfully prevents
the failure and the execution of the application proceeds as if no failure occurred.
If the failure persists, AWA cannot prevent the failure and forwards the failure to
the application. In the presence of multiple alternatives, AWA selects the alternative
candidates by relying on heuristics based on the past success of the redundant
alternatives.

When dealing with Web applications, AWA simply extracts the JavaScript code
from the failing page, replaces the suspect code with a redundant code fragment,
and displays the new page to the user, who can either continue interacting with the
application or signal the persistency of a problem. In this latter case, AWA iterates
with a new redundant code fragment.
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In the running example, the failing page contains several statements with known
redundant method call sequences. After two failing attempts, where AWA substitutes
a statement in the page with a redundant one without solving the failure and trig-
gering new user’s Fix me requests, AWA substitutes statement map . setCenter (new
GLatLng (37, 122), 15) with the candidate workaround shown in Figure 2, and
reloads the page successfully healing the failure [10].

AWA assumes the availability of the set of redundant alternatives present in
the target application, that can be automatically identified with the search-based
approach presented in Section 3, and pre-processes the application off-line to enable
the on-line healing mechanism. It analyzes the application off-line to locate code
fragments with redundant alternatives, pre-compiles all the redundant code fragments,
and instruments the application with the necessary code to select those alternative
redundant fragments at runtime in response to a failure. At runtime, AWA saves
the state of the application at the identified checkpoints, and reacts to failures by
executing workarounds.

The experimental data reported in [7, 8, 10] and collected on three popular Web
libraries (Google Maps, JQuery, and Youtube)® and four Java applications (Fb2pdf,
Caliper, Carrot2, and Closure compiler)'? that use two popular Java libraries (Google
Guava and JodaTime)!! indicate that AWA is indeed effective: It automatically applies
workarounds for 100 out of 146 known faults for the considered Web applications,
and for a percentage that varies between 19% and 48% of the failure-inducing faults
in the considered Java applications.

5 Automated Oracles

Software testing and in particular automatic generation of test oracles is another
important area where redundancy finds interesting applications. Test oracles check the
results of the code execution and signal discrepancies between actual and expected
behavior [4]. Their efficacy and cost play a key role in cost-effective test automation
approaches. Manual test case generation produces effective oracles, but is very
expensive and strongly impacts on the cost of testing. Generating useful test oracles
automatically is extremely valuable, but is generally difficult and in some cases may
not be practical or even possible [47].

In her seminal work, Weyuker proposes pseudo-oracles that exploit explicit re-
dundancy given in the form of multiple versions of a system to check program
results [47]. Doong and Frankl define the ASTOOT approach that relies on redun-
dancy that transpires from algebraic specifications to automatically generate test

9 Google Maps (http://code.google.com/apis/maps), JQuery (http:/jquery.com), Youtube
(http://code.google.com/apis/youtube)

10 Caliper (https://github.com/google/caliper), Carrot2 (http://project.carrot2.org), Closure Compiler
(https://github.com/google/closure-compiler), Fb2pdf (http:/fb2pdf.com)

1 Guava (https:/github.com/google/guava), JodaTime (https://github.com/JodaOrg/joda-time)
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inputs and oracles [16]. The metamorphic testing approach introduced by Chen et al.
almost a decade later exploits a form of redundant information given as metamorphic
relations to automatically generate test oracles [14].

In this section, we illustrate the role of intrinsic redundancy in automated soft-
ware testing by means of cross-checking oracles, which exploit the intrinsic re-
dundancy at the method call sequence level to automatically generate applica-
tion specific oracles [6]. Figure 4 illustrates the cross-checking oracle approach
by referring to the invocation of method containsvalue (value) of the class
ArrayListMultimap. Once mined the redundancy between methods (methods
map.containsValue (value) and map.values () .contains (value) in the exam-
ple), cross-checking oracles complement each invocation of a method for which
we know that there exists some redundancy (map.containsvalue (value)) with
a parallel invocation of the redundant method (map.values () .contains (value))
followed by a comparison of the produced results and reached states (equivalence
check in the figure). The oracle signals a problem if two redundant methods invoked
in the same context either produce different results or reach states that are distinct
from an external observer viewpoint.

void testCase() {
Map map = ArrayListMultimap.create();
map.put(“Key1”, 1);
map.put(“Key2”, 2);

AW~

map.containsValue(1);-------------- map.values().contains(1);

e

7| map.containsKey(“Key1”);

9}...

Fig. 4 A visual representation of a cross-checking oracle [21]

Cross-checking oracles can be generated and executed automatically given a set
of redundant code elements, and provide a way of checking for faults that depend
on the semantics of the program. They are automatically deployed into test suites
through binary instrumentation, and rely on a deep-clone mechanism to ensure a
reasonable level of isolation between the executions of redundant methods, with a
limited execution overhead. Cross-checking oracles implement a finite approximation
of equivalence that checks the equality of both the externally visible results and the
states reached after executing the redundant methods, through the concatenation of a
finite sequence of method invocations.

The experimental results reported in [6], indicate that cross-checking oracles
substantially improve the effectiveness of automatically generated test suites that rely
on implicit oracles, and in some cases can also improve specific oracles written by
the developers.



Intrinsic Redundancy for Reliability and Beyond 13

6 Beyond Functional Intrinsic Redundancy

In the previous sections, we illustrated the application of intrinsic software redun-
dancy in the context of software reliability, and in particular for the design of mech-
anisms for runtime failure recovery and automated oracles, focusing on functional
properties. The notion of intrinsic software redundancy can be extended to non-
functional properties, and find many new applications. In this section we identify
future research directions towards applications of non-functional software redun-
dancy in new contexts, namely performance optimization and security.

Performance Optimization

Redundant code fragments execute different sequences of actions that may lead
to notable differences in runtime behavior and resource usage. Such differences
can be exploited to alleviate performance as well as resource consumption prob-
lems, depending on the operative conditions. For example, mobile devices offer
several connectivity options that span from mobile protocols, WiFi connectivity,
Bluetooth access points and so on. The optimal choice of connectivity depends on
the operational conditions and on trade-off between performance, urgency, battery
consumption, privacy, security that cannot be predicted and efficiently wired in ad
design time.

Recent work has investigated the use of various forms of redundancy for improving
non-functional properties. The GISMOE approach exploits genetic programming
to generate program variants to address different non-functional objectives [24].
The competitive parallel execution approach (CPE) increases the overall system
performance by executing multiple variants of the same program in parallel [46].
Self-adaptive containers minimize the runtime costs by monitoring the runtime
performance of the application and automatically selecting the best internal data
structures [27]. Misailovic et al. propose a new profiler to identify computations that
can be replaced with alternative—and potentially less accurate—computations that
provide better performance [35]. The applicability and effectiveness of the different
approaches is bounded by the techniques used to identify and exploit redundancy
and the kind of redundancy that they infer and exploit.

The redundancy intrinsically present in software systems offers new opportunities
for automatically improving performance and resource consumption at runtime. The
key idea is to devise a “profile” of the redundant code that captures non-functional
differences among the alternatives, for instance in terms of timing, memory or battery
consumption, or network utilization. This non-functional profile can be updated and
exploited at runtime, while efficiently monitoring the system execution, to adapt the
behavior to meet, or improve, performance and resource utilization requirements.

For example, the non-functional differences of redundant video streaming algo-
rithms, such as runtime performance, battery consumption and network utilization,
can be exploited to face performance problems due to unpredictable environment
changes.
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1| A=

2| * Breaks a path up into a Vector of path elements, tokenizing on File.separator.
3| * @param path Path to tokenize. Must not be null.

4| * @return a Vector of path elements from the tokenized path

50 */

6| public static Vector tokenizePath(String path) {...}

8| /xx

9| =« Same as tokenizePath but faster.
10 */
11| public static String[] tokenizePathAsArray(String path) {...}

Fig. 5 Documentation of the tokenizePath and tokenizePathAsArray methods in Apache Ant.

Figure 5 illustrates the approach with a pair of redundant fokenize methods, which
explicitly offer different runtime performance. The two methods perform differently
depending on operational conditions, like the frequency of invocations on the same or
similar arrays, the dimension and the content of the arrays and so on, and coexist in
the Apache Ant library to offer different design opportunities. They can be mutually
exchanged based on the monitored operational profile and the discrepancies between
actual and expected performance. The non-functional profile shall capture the various
performance profiles of the two methods, identify the situations that may impact
on performance differences, and in general the non-functional differences that may
suggest the use of one of the two methods depending on the runtime conditions.

Security

Redundant code fragments may provide different security levels that can also be
exploited to tackle security issues and overcome runtime problems. Recent work has
investigated the possibility of exploiting some form of explicit redundancy to mitigate
security issues. N-variant systems increase application security by executing different
synthesized variants of the same program in parallel [15]. Orchestra tackles security
issues by creating multiple variants of the same program based on various compiler
optimizations [40]. Replicated browsers tackles security problems by executing
different browsers in parallel [48].

Redundant code fragments offer a promising alternative to implement new security
mechanisms by defining a security-profile of redundant code fragments and by
efficiently executing the various alternatives to identify divergences in their runtime
behavior, for instance with a multi-version execution framework [26].

Figure 6 shows an example of redundant code fragments that can be exploited to
improve security. Both methods gets and scanf can be successfully exploited by
attackers through buffer overflows when invoked with not well-terminated strings.
Method fgets provide the same functionality of gets and scanf, but prevents buffer
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1| // Reads characters from the standard input (stdin) and stores them as a C string
2| // into str until a newline character or the end—of—file is reached.
3| char x gets (char xstr);

5| // Reads data from stdin and stores them according to the parameter format into
6| // the locations pointed by the additional arguments.
int scanf (const char «format, ...);

9| // Reads characters from stream and stores them as a C string into str until

10| // (num— 1) characters have been read or either a newline or the end—of—file is
11| // reached, whichever happens first.

12| char x fgets (char xstr, int num, FILE xstream);

Fig. 6 Documentation of the gets, fgets and scanf methods of the C Standard Library.

overflows. The information about the redundancy of these three methods provides
the necessary knowledge to develop mechanisms to prevent security threats.

7 Conclusions

Redundancy is a traditional ingredient of many mechanisms for improving reliability
and fault tolerance at runtime. Classic engineering approaches rely on different forms
of redundancy explicitly added at design time, and suitably exploited at runtime.
Such form of redundancy may be expensive to produce, and may be relegated to
systems whose reliability requirements balance the extra costs of adding redundancy
explicitly, as in the case of N-version programming for safety critical applications.

Recent studies have identified a different form of redundancy that is not explicitly
added at design time for improving reliability, but is present for independent design
and development decisions, and that we refer to as intrinsic software redundancy.

In this paper we summarize the recent advances in the study and exploitation of
intrinsic software redundancy, and we indicate promising research directions. We
define intrinsic software redundancy informally, discuss the source of such kind of
redundancy, and show its presence in relevant software applications. We present an
approach to automatically identify intrinsic software redundancy at the method call
sequence level, thus providing evidence of the limited costs of gathering information
about redundant code elements at a convenient abstraction level.

We report some applications of intrinsic software redundancy to improve reliability
at runtime, by proposing the automatic generation of runtime workarounds and
program specific oracles. We conclude by indicating new relevant domains that can
benefit from the presence of intrinsic redundancy in software systems.
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