
Combining Symbolic Execution and Search-Based Testing for
Programs with Complex Heap Inputs

Pietro Braione

University of

Milano-Bicocca

Italy

braione@disco.unimib.it

Giovanni Denaro

University of

Milano-Bicocca

Italy

denaro@disco.unimib.it

Andrea Mattavelli

Imperial College

London

United Kingdom

amattave@imperial.ac.uk

Mauro Pezzè
∗

Università della Svizzera

Italiana (USI)

Switzerland

mauro.pezze@usi.ch

ABSTRACT
Despite the recent improvements in automatic test case generation,

handling complex data structures as test inputs is still an open prob-

lem. Search-based approaches can generate sequences of method

calls that instantiate structured inputs to exercise a relevant portion

of the code, but fall short in building inputs to execute program el-

ements whose reachability is determined by the structural features

of the input structures themselves. Symbolic execution techniques

can effectively handle structured inputs, but do not identify the

sequences of method calls that instantiate the input structures

through legal interfaces. In this paper, we propose a new approach

to automatically generate test cases for programs with complex data

structures as inputs. We use symbolic execution to generate path

conditions that characterise the dependencies between the program

paths and the input structures, and convert the path conditions to

optimisation problems that we solve with search-based techniques

to produce sequences of method calls that instantiate those inputs.

Our preliminary results show that the approach is indeed effective

in generating test cases for programs with complex data structures

as inputs, thus opening a promising research direction.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Formal software verification;

KEYWORDS
Automatic test case generation, Symbolic execution, Search-based

software engineering

ACM Reference format:
Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè. 2017.

Combining Symbolic Execution and Search-Based Testing for Programswith

Complex Heap Inputs. In Proceedings of 26th International Symposium on
Software Testing and Analysis , Santa Barbara, CA, USA, July 2017 (ISSTA’17),
12 pages.

https://doi.org/

∗
Also with University of Milano-Bicocca, Italy.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA’17, July 2017, Santa Barbara, CA, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5076-1/17/07. . . $15.00

https://doi.org/

1 INTRODUCTION
Automatically generating test cases amounts to sample the pro-

gram input space, characterise relevant values for the inputs, and

synthesise method sequences that instantiate the input variables of

the program under test. The problem of sampling the input space

and characterising relevant input values has been widely investi-

gated [10, 25, 28, 40, 44, 51]. Functional and model-based testing

sample the input space according to specifications and models,

structural testing techniques are driven by the code structure [47].

The challenge of producing sequences of method calls that ini-

tialise the input and the state variables that involve complex data

structures has been only partially addressed so far.

Specification-based test generation techniques, like Korat [7],

TestEra [38], and Udita [33], exploit invariant specifications to

identify test-relevant states of input data structures, but rely on

the possibility of assigning member fields directly (direct heap

manipulation) to instantiate the objects that correspond to the

identified input states. Symbolic techniques, like JPF [53], jPET [1],

JBSE [10, 11], and BLISS [48], identify input states to execute code

elements, but rely on direct heap manipulation to instantiate the

data structures that comprise these input states. Test cases that

instantiate the input data structures by directly manipulating the

heap memory may either not compile, since they directly access

private fields, or create unreachable program states, since they

bypass the program functions that preserve the invariants [17], and

are often hardly readable and understandable by developers [18].

The challenge of automatically generating sequences of method

calls that suitably instantiate input structures has been addressed

with random, search-based, and symbolic execution approaches.

Random and search-based approaches generate valid and exe-

cutable test cases by executing the program under test and sampling

the execution space through the program interfaces [16, 28, 45].

These approaches work with limited knowledge of the relation-

ship between program branches and input data structures. They

effectively generate method sequences that instantiate simple data

structures, but fail in generating method sequences that instantiate

non-trivial data structures, such as the ones needed to elicit com-

plex and possibly inter-procedural dependencies that may either

trigger subtle failures, or cover interesting code elements.

Symbolic analysis approaches synthesise path conditions, which

indicate the conditions on the input values to execute given program

paths, and generate test cases by identifying concrete values that

satisfy the path conditions. Many symbolic executors can effectively

handle programs that take primitive inputs [4, 5, 8, 12, 13, 34, 49, 54],

but only some can efficiently reason on input data structures as

well [1, 10, 20, 48, 51, 53].

https://doi.org/
https://doi.org/

ISSTA’17, July 2017, Santa Barbara, CA, USA Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè

1 static final int N = ...; //some constant value
2 void sample(LinkedList list, Object obj) {
3 list.addLast(obj);
4 Object r = list.remove(N);
5 if (r == obj) {
6 // error!
7 }
8 }

Figure 1: Program sample with an input double linked list

Some approaches combine symbolic executionwith search-based

techniques. They use symbolic execution to improve method se-

quences generated with search-based techniques, by symbolically

exploring the program paths that can be reached with alternative

values of the primitive inputs in these method sequences [35, 44,

53, 54]. These approaches may improve over pure search-based

approaches, but share the same limitations of search-based tech-

niques in exploring program branches that depend on complex

input structures that require different method sequences.

Modern symbolic execution approaches deal with input data

structures, but do not adequately address the synthesis of method

calls that instantiate complex input data structures yet [10, 20, 48,

53]. They either instantiate the input data structures by directly

manipulating the heap memory [1, 10], or rely on static analysis to

build sequences of interface method invocations that produce the in-

put structures that satisfy the path conditions [50, 51]. Approaches

that rely on static analysis successfully identify some combinations

of constructors and methods that instantiate simple input struc-

tures, but often fail in the presence of inter-procedural relations

that depend on complex input structures, due to imprecision and

inefficiency of static analysis.

In this paper, we propose SUSHI, a new approach that combines

symbolic execution and search-based approaches to automatically

generate executable test cases with complex data structures as in-

puts. We symbolically execute the target program to produce path

conditions that characterise the structure of the inputs, and convert

the path conditions into the objective function of an optimisation

problem that we solve with a search-based approach. An optimal

solution is a sequence of method calls that builds the input struc-

tures that exercise the identified path conditions, thus resulting in

test cases that execute the corresponding program paths.

Differently from the approaches that exploit search-based tech-

niques to generate test cases and symbolic execution to explore

alternative values of the primitive inputs [35, 53, 54], we take full

advantage of the power of symbolic execution to precisely charac-

terise complex input structures that trigger the execution of relevant

paths in the programs, and then exploit search-based approaches

to generate concrete method sequences that instantiate the data

structures in the path conditions.

In summary, this paper contributes (i) a complete symbolic exe-

cution approach to generate concrete test inputs for programs that

manipulate complex input structures, (ii) an automatic approach

to convert path conditions into optimisation problems that can be

heuristically solved with search-based techniques to generate se-

quences of method invocations that produce input data structures

that satisfy the path conditions, (iii) a prototype implementation

1 LinkedList list = new LinkedList();
2 Object obj = new Object();
3 list.add(new Object());
4 list.add(new Object());
5 list.add(new Object());
6 list.add(new Object());
7 sample(list, obj);

Figure 2: A test case that executes line 6 of program sample
in Figure 1 (with N = 4)

of SUSHI, and (iv) initial empirical evidence that the proposed ap-

proach outperforms current approaches in generating concrete test

cases with complex data structures as inputs.

This paper is organised as follows. Section 2 discusses in detail

the limitations of search-based and symbolic execution test case

generation approaches through a simple example. Section 3 de-

scribes our approach, SUSHI, and provides the essential details of

the prototype implementation that we used to gather experimental

evidence of its effectiveness. Section 4 presents the experimental

results that confirm the ability of SUSHI to automatically gener-

ate test cases for programs with complex structured inputs, and

reports some representative case studies that indicate the advances

of SUSHI with respect to state-of-the-art approaches. Section 5

surveys the most relevant related work. Section 6 summarises the

main contribution of this paper and indicates our current research

directions.

2 MOTIVATING EXAMPLE
We illustrate the achievements and limitations of the current ap-

proaches for generating concrete test cases for programs with input

data structures by referring to the simple code in Figure 1. Method

sample takes in input a doubly linked list list and a generic object

obj (line 2), appends obj to list (line 3), removes the element at some

index N from list (line 4), and enters an error state if the removed

element r and obj refer to the same object in memory (lines 5–6).

Although method sample is only a few lines long and does not

contain any reference to peculiar or esoteric language features,

current state-of-the-art test generators fail in producing test inputs

that exercise the faulty statement at line 6.

Random test case generators cannot cope with complex data

structures. As a representative example, the popular random test

case generator Randoop [45] fails to generate a test case to execute

the error statement at line 6, even with a time budget of 12 hours.

In particular, Randoop fails to generate a test case that executes

line 6 of the program because such test cases consist of lists with

exactly N elements or with obj at N -th position, which are unlikely

to be generated randomly even for low values of N .

Search-based approaches fail in generating test cases that execute

line 6 of the program since they miss information on the complex

data structure required to exercise the branch at line 5 [28].

Symbolic executors effectively generate the input conditions

that characterise the paths that execute the branch, but do not

generate valid test cases that satisfy the path conditions [51]. In the

next subsections, we illustrate in detail the limits of search-based

and symbolic execution approaches, referring to the example in

Figure 1.

Combining Symbolic Execution and Search-Based Testing ISSTA’17, July 2017, Santa Barbara, CA, USA

1 fresh(Obj) &&
2 fresh(List) &&
3 fresh(List.header) &&
4 fresh(List.header.previous) &&
5 fresh(List.header.next) &&
6 fresh(List.header.next.next) &&
7 fresh(List.header.next.next.next) &&
8 List.header.next.next.next.next = List.header.previous &&
9 List.size > 3

Obj and List are the symbolic values for obj and list

Figure 3: A path condition to reach line 6 of program sample
in Figure 1 (with N = 4)

2.1 Search-Based Software Testing
Search-based software testing (SBST) exploits search-based algo-

rithms to automatically generate test cases [28, 46, 52]. SBST formu-

lates the problem of generating test cases as the problem of search-

ing for inputs that maximise a test adequacy criterion, for instance

branch coverage. SBST uses a search-based algorithm to maximise

the value of an objective function that quantifies the distance of a

candidate solution from the optimal one. A well-established objec-

tive function is the branch distance that heuristically quantifies the

distance of test inputs from executing a given condition to max-

imise branch coverage [44]. SBST produces test cases that increase

the value of the objective function by iteratively improving the

solutions, until reaching either full branch coverage or a timeout.

EvoSuite is one of the most popular tools for SBST of Java pro-

grams [28] and generates test cases as sequences of method and

constructor invocations. For each parameter, EvoSuite generates

primitive values through random sampling, and produces object

references through the invocation of constructors and methods

that set up the object state. EvoSuite relies on the class APIs to

instantiate and modify the internal object state, ultimately produc-

ing readable and valid test cases. The large body of experiments

reported in the literature witnesses a mature and effective tool, able

to generate test suites that consistently achieve high code coverage

and reveal software failures [26, 27, 29, 30].

However, when challenged to cover the branch that leads to the

error statement at line 6 in Figure 1, EvoSuite cannot produce a

method sequence that exercises the branch if N ≥ 15. EvoSuite

cannot generate a valid test case for this branch because its ob-

jective function focuses on approaching and satisfying the target

branch conditions which, in our example, does not contain enough

information about the relationship between the branch and the

input data structure.

2.2 Symbolic Execution with Heap Inputs
Symbolic execution builds conditions on symbolic inputs that char-

acterise the input values required to execute the program paths

(path conditions). A solution of a path condition is a set of con-

crete values for the input variables to execute the path. Modern

symbolic execution approaches deal with complex structured in-

puts by augmenting the path condition with clauses that predi-

cate on the relations between the object references in the input

state [9, 20, 39, 49, 53].

The most popular technique used in symbolic execution to han-

dle structured inputs is lazy initialisation [39]. Lazy initialisation

1 Object obj = new Object();
2 LinkedList list = new LinkedList();
3 list.header = new LLEntry();
4 list.header.previous = new LLEntry();
5 list.header.next = new LLEntry();
6 list.header.next.next = new LLEntry();
7 list.header.next.next.next = new LLEntry();
8 list.header.next.next.next.next = list.header.previous;
9 list.size = 7;
10 sample(list, obj);

Figure 4: A test case derived from the path condition of Fig-
ure 3 by direct object manipulation (with N = 4)

starts by executing the program with uninitialised symbolic refer-

ences and assumes their possible values only upon their dereference.

When dereferencing a symbolic reference, lazy initialisation enu-

merates the possible legal structures for the object, and represents

each of them as a constraint in the path condition, thus generating

a set of path conditions, one for each possible legal structure. A

symbolic reference can be initialised to (i) null, (ii) the address of a
new object of any compatible type (fresh), or (iii) the address of any
compatible objects created during a prior initialisation step (alias).

Symbolic executors for programs with structured inputs suc-

cessfully generate a path condition that characterises a test case

that exercises the faulty statement at line 6 in Figure 1. Differently

from search-based approaches, symbolic execution tracks the rela-

tionship between branch conditions and constraints on input data

structures. Figure 3 reports the path condition that the JBSE sym-

bolic executor [11] produces by executing the path that leads to the

error statement at line 6 of method sample with N = 4.

The path condition of Figure 3 specifies: (i) the conditions on the

symbolic input referencesObj and List (lines 1–2), (ii) the conditions
on the values that the internal nodes of the doubly linked list can

assume when dereferencing list, which are new objects (lines 3–7),

except for the last element that should refer to the first element

in the list (line 8), and (iii) the condition on List.size, the symbolic

value of variable size that corresponds to the size of the list (line 9).

Test case generation approaches based on symbolic execution

generate concrete test inputs from path conditions by identifying

concrete input states that satisfy all the clauses of a path condi-

tion, and by synthesising code to initialise the state and execute

the specific paths in the program. While symbolic execution ap-

proaches generate values that satisfy the numeric constraints by

means of SMT solvers [6, 19, 24, 36], they provide limited solutions

for solving constraints that predicate over complex data structures.

As a result, symbolic execution is indeed able to generate a path

condition that leads to line 6 in Figure 1, but cannot generate a legal

method sequence that leads to execute the line by instantiating the

necessary input structures.

Current test case generation approaches based on symbolic exe-

cution propose partial solutions to build structured inputs by either

directly manipulating the data structures (Section 2.2.1) or by using

static analysis (Section 2.2.2).

2.2.1 Building Heap Inputs by Direct Manipulation. Symbolic

execution tools like JPF [53], jPET [1], JBSE [10, 11] and BLISS [53]

straightforwardly instantiate the input objects in the heap memory,

and set the initial state by directly manipulating their internal fields.

ISSTA’17, July 2017, Santa Barbara, CA, USA Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè

Figure 4 shows a test case generated from the path condition in

Figure 3 by directly instantiating the objects in the heap and manip-

ulating their fields. The test case is composed of a set of statements

that build the concrete inputs (lines 1–9) and an invocation of the

target method (line 10). The test case mimics the path condition

line by line: it builds and sets the structure of the heap (lines 1–8),

initialises variable list.size with a value computed with an SMT

solver (line 9), and invokes the method sample with the instantiated

list and obj references as parameters (line 10).

Creating test cases by directly manipulating object references

usually violates the information hiding principle, and often result

in compilation errors. Some compilation errors simply stem from

accessing private fields and can be fixed through low-level language

features that override the visibility restriction. For instance, the

test case in Figure 4 can be generated by exploiting the Java re-

flection APIs to access the private class LLEntry and the private

fields header, next and previous. However, the resulting test case

will appear cryptic to developers, who may not be aware of the

internal structure of all components (both internally developed and

external reusable libraries) referred to in the test case, ultimately

questioning the practical usability of this approach.

Direct heap manipulation might also bypass programming inter-

faces that maintain representation invariants of the data structures.

The resulting test cases may thus set the input objects to states

not reachable through the programming interfaces [17], and may

result in test cases not yielding feasible behaviours of the program.

For example, the test code of Figure 4 assigns the numeric value

7 to list.size (line 9), which is a correct solution for the constraint

List.size>3 in the path condition, but violates the invariant of the

current list structure that contains only 4 nodes (excluding the

sentinel node list.header).

2.2.2 Building Heap Inputs with Static Analysis. Other sym-

bolic execution approaches, for example Pex [51] and its extension

Seeker [50], instantiate complex structured inputs from path condi-

tions by deriving sequences of interface method calls with static

analysis.

Pex generates test cases with dynamic symbolic execution (DSE),

a modern extension of classic symbolic execution, and solves the

path conditions that involve structured inputs by exploiting an intra-

procedural static analysis. The analysis identifies a combination of

constructors and methods that potentially instantiate the objects

to satisfy the path condition.

Seeker iteratively interleaves DSE and static analysis. In essence,

Seeker invokes Pex multiple times with parametric test drivers built
by statically analysing the code to compute both direct and indirect

data dependencies of the uncovered branches. Seeker uses static

analysis to identify methods that potentially modify a given field,

and exploits the identified methods to incrementally build richer

test drivers that include gradually longer method sequences. Seeker

symbolically executes the test drivers to both filter out unsuccessful

drivers and generate parameters that lead to execute new branches.

In both Pex and Seeker, the static analysis falls short with path

conditions that depend on non-trivial inter-procedural relations

betweenmethod parameters and reachable object states.When chal-

lenged to generate test cases for the program in Figure 1, Pex and

Seeker limit their generation to test cases that involve LinkedList

Symbolic
Execution SynthesisSearch

JUnit
Tests

JBSE

Java
Method

Path
Conditions

Search
Results

SUSHI

EvoSuite

Symbolic
Executor

Search
Engine

JBSE

Target
Program

Path
Conds

Objective  
Funcs

SUSHI

EvoSuite

Search
Problem

Converter
JUnit
Tests

Figure 5: The SUSHI approach

structures with at most a single node, resulting in simple test cases

that do not exercise the error statement at line 6, as well as many

other relevant cases.

In this paper, we propose SUSHI, Symbolic Unit testing via Search
of Heap Inputs, a new approach that overcomes the limitations of

current test case generation techniques for programs with complex

data structures as inputs by exploiting an original combination of

symbolic execution and search-based techniques. SUSHI combines

symbolic execution to generate path conditions that predicate on

input data structures with search-based approaches to generate

feasible method sequences that produce correct test cases.

3 THE SUSHI APPROACH
SUSHI formulates the problem of finding a sequence of method

calls that satisfy a path condition as an optimisation problem over

the test space. As shown in Figure 5, SUSHI takes in input a target

program and produces test cases that instantiate the input structures

in suitable states and execute the target program in such states.

The main logical components of SUSHI are a symbolic executor, a

search problem converter, and a search engine.

Symbolic executor This component symbolically execute pro-

grams with complex structured inputs, for example by using lazy

initialisation as discussed in Section 2.2. Current symbolic execu-

tors rely on various forms of invariants on the data structures to

avoid generating spurious data structures that cannot be instanti-

ated concretely. In this way, they limit the path explosion problem

and ultimately enhance the efficiency of the exploration. Popular

approaches rely on invariants expressed as executable properties

in the form of either RepOk methods [20, 53], or declarative prop-

erties [10, 48]. This component computes a set of path conditions

that address specific test objectives in the target program.

Search problem converter This component converts the path

conditions into optimisation problems. For each path condition, it

produces an objective function that computes the distance of the

current inputs from the optimal solution. The objective function

associates a sequence of method calls that instantiate the input

objects with a non-negative real value that represents the distance

of that input from the optimal solution, that is, an input that satisfies

the path condition.

Search engine This component searches for optimal method call

sequences by solving the optimisation problem produced with the

search problem converter by means of search-based approaches.

The identified call sequences represent a test case to exercise the

path identified by the path condition.

For program sample of Figure 1, SUSHI generates a set of test
cases that include the test case illustrated in Figure 2.

Combining Symbolic Execution and Search-Based Testing ISSTA’17, July 2017, Santa Barbara, CA, USA

The core technical contribution of SUSHI is the search problem
converter, while the symbolic executor and the search engine are

built on top of state-of-the-art symbolic executors and search en-

gines. In the next sections, we formalise the objective functions, the

core of the search problem converter, and describe a prototype that

instantiates SUSHI for branch testing. Our prototype implementa-

tion leverages the JBSE symbolic executor [11] and the EvoSuite

search engine [28], as shown in Figure 5.

3.1 The SUSHI Objective Function
The core of the SUSHI approach is the search problem converter

component that translates a path condition into the objective func-

tion of an optimisation problem over the space of the possible test

cases for the target program. A solution of the optimisation problem

is a test case that executes the program path represented by the

path condition. Here we formalise the objective functions and the

related optimisation problems.

SUSHI translates a path condition PC into the objective function

distancePC (t) that associates a test case t with a non-negative

value d that evaluates to 0 if t satisfies all the clauses of the path
condition, and to a positive integer that grows proportionally with

the amount of clauses of the path condition that t does not satisfy.
Thus, the objective function distancePC (t) defines the optimisa-

tion problem as the problem of finding a test case that satisfies

the path condition, that is a test case on which the distance func-

tion evaluates to zero. The problem of optimising (minimising) the

objective function is formally defined as:

min

t
distancePC (t) =

k∑
i=1

δci (t)

where the path condition PC is a conjunction of clauses PC =
c1 ∧ c2 ∧ . . . ∧ ck , t is a test case, and δci ∈ [0, 1] quantifies the

distance of t from the values that satisfy the clause ci .
A minimum of the objective function is a test case for which

all δci (t) evaluate to zero, and each δci (t) evaluates to zero only

for test cases that satisfy the path condition clause ci . Thus, the
objective function evaluates to decreasing values for test cases that

satisfy an increasing number of clauses.

δci (t) is computed by evaluating the clause ci against the input
state produced by executing the test case t as defined in Figure 6,

which distinguishes three types of clauses:

• numeric clauses in the form n1 ▷◁ n2, where n1 and n2 are arith-
metic expressions over numeric input values and ▷◁ is some

comparison operator,

• reference equality clauses in form r1 = r2, where r1 and r2 are
input references, and

• fresh object clauses in the form fresh(r), where r is an input

reference that must refer to a fresh object in the input state.

We now discuss the distance function in detail, by denoting as

t(exp) the evaluation of the expressions exp in the state produced

by executing the test case t , where exp can be either a numeric

expression or a reference.

Numeric clauses The distance δn1▷◁n2
(t) yields 0 if the compar-

ison n1 ▷◁ n2 yields true . Otherwise, it is a positive value that

corresponds to the absolute value of the difference between n1 and
n2 normalised in the interval [0, 1].

We add a small positive quantity ϵ to the difference between

n1 and n2, to handle the case of strict inequality comparisons. For

example, the clause List.size > 3 of Figure 3 is not satisfied by a test

case t that builds a list with exactly 3 nodes, and this is reflected

by the distance δList.size>3(t) that yields (3 − List.size + ϵ)/(1 + 3 −
List.size + ϵ) = ϵ/(1 + ϵ) which is a non-zero albeit small value.

When either or both n1 and n2 refer to input values that depend

on objects that do not exist in the input state, yielding an indefinite

value (⊥) when evaluated, the distance function conventionally

evaluates to the maximal value 1.

This distance function favors test cases that better approximate

the solutions of the path condition. This often yields a smooth

objective function, ultimately improving the search of an optimal

solution. For example, a test case t ′ that builds a list with a single

item has a distance δList.size>3(t
′) strictly greater than a test case

t ′′ that builds a list with two items, and therefore the search pro-

cess will consider t ′′ over t ′, thus progressing towards the optimal

solution.

Reference clauses The distance function δr1=r2 (t) yields 0 if t(r1)
and t(r2) refer to the same object (the two references alias each

other) or are both null. Otherwise, the distance function yields 1,

including when the evaluation of either r1 or r2 is undefined.

Fresh object clauses The distance function δfresh(r)(t) addresses
the satisfaction of clauses that predicate on the freshness of the
object referred with r . The semantics of freshness depends on the

lazy initialisation algorithm that initialises a symbolic reference

to a fresh object if it assumes a reference to a (symbolically fresh)

input object that is distinct from any other input object previously

dereferenced.

For instance, the clause fresh(List.header.previous) in Figure 3

states the freshness of the reference List.header.previous. This clause
is satisfied if:

t(List.header.previous) , t(List.header)∧

t(List.header.previous) , t(List)∧

t(List.header.previous) , t(Obj)

since the previous clauses in the path condition state that the refer-

ences List.header, List and Obj point to other objects dereferenced

at previous statements.

To evaluate freshness, we exploit the temporal order in which the

symbolic executor generates the clauses in the path condition. We

constrain the symbolic executor JBSE to produce path conditions

in which a clause ci precedes a clause c j if and only if the clause ci
is assumed earlier than c j . Under this condition, we evaluate the
freshness of a clause c with respect to the objects already referred

to in any other clause that precedes c in the path condition.

Figure 6 defines the distance function δfresh(r)(t) referring to the
set of the previously referred objects (referred_objects) in the prefix

of the path condition. The distance function δfresh(r)(t) yields 0 if
r is defined and does not refer to any referred objects in previous

clauses, 1 otherwise.

The two-value distance functions for clauses over references are

smoothed by the objective function that sums the similarities of

many different path condition clauses over the references in the

input state.

ISSTA’17, July 2017, Santa Barbara, CA, USA Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè

δci (t) =



δn1▷◁n2 (t) =


0 if t (n1) ▷◁ t (n2)
1 if t (n1) = ⊥ or t (n2) = ⊥

1 −
1

1 + |t (n1) − t (n2) | + ϵ
otherwise

δr1=r2 (t) =
{

0 if t (r1) = t (r2)
1 if t (r1) = ⊥ or t (r2) = ⊥ or t (r1) , t (r2)

δfresh(r)(t) =
{

0 if t (r) < referred_objects(t)⟨c1, . . . , ci−1 ⟩
1 if t (r) = ⊥ or t (r) ∈ referred_objects(t)⟨c1, . . . , ci−1 ⟩

referred_objects(t)⟨⟩ = ∅

referred_objects(t)⟨c1, . . . , ck ⟩ =
{

referred_objects(t)⟨c1, . . . , ck−1 ⟩ ∪ {t (r)} if ck = fresh(r)
referred_objects(t)⟨c1, . . . , ck−1 ⟩ otherwise

Figure 6: δci (t): distance of a test t from the values that satisfy a clause ci of a path condition

3.2 Prototype
Exploring all possible paths of a program is practically infeasible,

and thus a practical implementation of SUSHI shall embed a strat-

egy to select a set of testing-relevant path conditions. We have

implemented a Java prototype that instantiates SUSHI to optimize

branch coverage.
1
Our prototype symbolically executes the subject

to identify a set of paths that cover as many branches as possible,

and concretizes the corresponding path conditions to test cases.

We focus on branch testing to both limit the amount of paths

to be explored, and to produce results comparable with compet-

ing techniques. The branch selection strategy is embedded in the

symbolic executor. The prototype implementation of the core parts

of our approach—the search problem converter and the search en-
gine—are general, and the prototype can be adapted to any other

selection strategy by simply adapting the symbolic executor.

Our implementation exploits the symbolic executor JBSE to tra-

verse the program paths in depth-first order up to some user-defined

bounds, and compute the corresponding path conditions. JBSE deals

with heap-symbolic reasoning, and includes a comprehensive set

of techniques to account for structural invariants of the input data

structures during symbolic execution [9, 10].

When JBSE terminates, the prototype processes the informa-

tion on the branches traversed during the symbolic execution by

identifying the minimal subset of paths that achieves maximum

branch coverage, using a linear programming library,
2
and trans-

lates the corresponding path conditions into evaluator programs
that compute the objective function discussed in Section 3.1.

The prototype then leverages the search-based test generator

EvoSuite to build the test cases by using the evaluator programs of

the selected path conditions as fitness functions. EvoSuite generates

test cases by means of a genetic algorithm that randomly mutates

and combines a population of generated test cases to create new

solutions, aiming to progressively minimize the value returned

by the evaluator program (the fitness function), until it eventually

succeeds in generating a test case that makes the evaluator program

return zero, that is, a test case that satisfies the given path condition.

Some path conditions can be spurious due to unsound computa-

tions during symbolic execution, and thus SUSHI cannot instantiate

1
https://github.com/pietrobraione/sushi

2
https://www.gnu.org/software/glpk/

those path conditions into test cases. Our prototype iterates from

the path selection phase to select a new set of path conditions

that can execute the branches that were not covered yet, until a

maximum time budget for the test search phase is reached.

4 EVALUATION
We experimentally evaluated our hypothesis that, by augmenting

symbolic execution with a search-based engine, SUSHI effectively

generates test cases for programs that depend on complex struc-

tured inputs in the form of sequences of method invocations. In

particular, SUSHI is more effective than alternative approaches

that combine symbolic execution with either direct heap manipu-

lation or static analysis approaches. We present the results of the

experiments that we conducted to answer three research questions:

RQ1: Does SUSHI generate test cases more effectively than sym-

bolic execution approaches with direct heap manipulation?

RQ2: Does SUSHI generate test cases more effectively than sym-

bolic execution approaches with static analysis?

RQ3: To what extent do SUSHI test suites exercise program paths

that depend on complex data structures as inputs?

We evaluated SUSHI by executing the prototype described in

Section 3.2 on a set of benchmark programs, which work on com-

plex structured inputs, and quantified the effectiveness of the test

suites in terms of both soundness and branch coverage. We measure

soundness as the ability of generating only valid test data, that

is, test cases that execute reachable program states, and branch

coverage as the fraction of executed program branches.

We address RQ1 by comparing the tests generated with SUSHI

and JBSE/DHM, respectively. JBSE/DHM extends the JBSE symbolic

executor with direct heap manipulation. The results show that

SUSHI outperforms JBSE/DHM in both soundness and coverage.

We addressRQ2 by comparing SUSHIwith Pex and Seeker, which

combine dynamic symbolic execution with different static analyses

to synthesise test cases composed of legal method sequences. We

found compelling evidence that SUSHI outperforms both Pex and

Seeker in terms of branch coverage.

We address RQ3 by inspecting the program branches executed

only by SUSHI, and not executed by any of a representative sample

of state-of-the-art test generators: Pex, Seeker, and EvoSuite. The

results confirm the unique characteristics of SUSHI to identify and

instantiate the data structures required to execute such branches.

Combining Symbolic Execution and Search-Based Testing ISSTA’17, July 2017, Santa Barbara, CA, USA

4.1 Subject Programs
We considered a set of Java classes with paths that involve complex

inter-procedural dependencies and result in complex conditions on

input data structures during symbolic execution:

sample The sample program of Figure 1 with N = 15.

treemap An implementation of red-black trees [23].

avl An implementation of AVL trees [32].

caching An implementation of a doubly linked list, which caches

node objects to improve efficiency [32].

tsafe Class TrajectorySynthesizer of the TSAFE prototype [21] that

computes plane trajectories based on position and flight plan.

gantt Class DependencyGraph of the GanttProject software (com-

mit 6d9a001) that handles dependency edges for a Gantt graph.3

closure01 Class RemoveUnusedVars of Google Closure compiler

that removes unused variables from parse trees.
4

closure72 Class RenameLabels of the Google Closure compiler

that processes the LABEL nodes out of parse trees.

The programs tsafe, closure01, and closure72 include known faults
that depend on non-trivial structured inputs. The fault in tsafe was
revealed while verifying a set of correctness properties [9], whereas

the faults in closure01 and closure72 are part of Defects4J, (bugs 1
and 72, respectively) [37].

Table 1 reports the subject programs (column Subject) with the

number of branches of the class under analysis (column Branches),
and the executable lines of code (column LOC) computed as the

lines of code in both the class under analysis and the transitive

closure of all its dependencies, which indicatively represent the

complexity of code that the symbolic execution has to analyze.

4.2 Experimental Setup
We executed the SUSHI prototype against the subject programs,

considering all public methods of the classes under analysis as

entry points for the symbolic execution, and challenging SUSHI

to generate test cases that cover the program branches. For each

program, we configured the symbolic executor JBSE in SUSHI with

the minimum bound values that produce the highest coverage, and

encoded heap invariants in the HEX language [10].
5

An independent variable of our experiments is the accuracy of

the data structure invariants that we feed to the symbolic executor.

The less accurate the invariants are, the more likely the symbolic

executor produces spurious path conditions, which correspond to

unreachable program states.

We considered two different configurations of the invariants of

the input data structures: partial and accurate invariants. Partial in-
variants specify only a subset of the properties required to precisely

symbolically analyse the subject programs, thus forcing SUSHI to

cope with many spurious path conditions and waste time in try-

ing to concretise them. Accurate invariants specify the properties

that fully characterise the data structures to discard all spurious

3
https://github.com/bardsoftware/ganttproject

4
https://github.com/google/closure-compiler

5
We observe that SUSHI is not sensitive to either the chosen symbolic executor, or the

specification language used to express the data structure invariants. For instance, using

the JPF symbolic executor with equivalent invariants encoded as repOk methods [53]

would lead to identical path conditions and then identical coverage results in our

experiments, though the performance of the symbolic execution phase may vary.

path conditions, thus challenging SUSHI to concretise valid path

conditions for as many program branches as possible.

We selected partial invariants as common invariants of the ba-

sic data structures: lists and unbalanced trees. In particular, we

referred to the doubly linked list invariants when applying SUSHI

to the subjects sample, caching, tsafe and gantt, and we referred to

the (unbalanced) binary and n-ary trees invariants when applying

SUSHI to the subjects treemap, avl, closure01 and closure72. The
accurate invariants systematically account for the additional data

structures and properties of each benchmark program. In particular,

we specified the full invariants of caching linked lists, red-black

trees, AVL trees, and compiler parse trees [10].

We augmented the JBSE symbolic executor with direct heap

manipulation (JBSE/DHM) as follows: Given a path condition to be

instantiated, JBSE/DHM queries the Z3 solver to solve the numeric

constraints, and exploits the Java reflection APIs to set the object

states according to the path condition.

We executed each experiment with a total time budget of two

hours, with at most one hour allocated to symbolic execution. We

set one-hour timeout for the symbolic execution phase in both

SUSHI and JBSE/DHM to foster controlled experiments on identical

sets of path conditions. We then allocated further 60 minutes for

test generation to both tools. We ran all the experiments 10 times

to gain statistical strength.

We executed the test generators Pex [51] (Visual Studio 2015)

and Seeker [50] (v 1.0) against an equivalent C# porting of sample,
treemap, avl, caching, tsafe, and gantt. We compared SUSHI with

the best results achieved by executing Pex and Seeker with and

without invariants encoded as invariant checking (repOk) methods.

To comply with Pex requirements, we used invariant checking

(repOk) methods equivalent to the HEX invariants used in JBSE.

We compared the branches covered by SUSHI, Pex, Seeker and

EvoSuite [28] searching for evidence that SUSHI test suites exe-

cute branches hard to cover with state-of-the-art test generators,
6

and that the branches uniquely covered with SUSHI depend on

complex data structures. To this end, we considered the best result

of EvoSuite version 1.0.1 out of 10 runs in the default EvoSuite

configuration that optimises branch coverage. We set a time bound

of two hours that is twice larger than the time at which all tools

saturate coverage, resulting in the best hand-tuning for all tools

used in the experiments. Notice that we only compare coverage.

For all generated test suites, we measured branch coverage with

the JaCoCo library,
7
and manually cross-checked whether the test

cases reveal the known faults in the subjects tsafe, closure01, and
closure72. We executed all experiments on a Ubuntu 16.04 machine

equipped with 64 CPUs at 2.6 GHz and 512 GB of RAM.

4.3 RQ1/RQ2: SUSHI wrt Symbolic Approaches
Table 1 reports the number of tests generated by SUSHI and JB-

SE/DHM configured with partial and accurate invariants (columns

Test cases), the branch coverage of the generate tests (columns

Branch coverage), and the execution time required by SUSHI and

JBSE/DHM to generate the tests as median over 10 runs (columns

6
We also experienced with Randoop [45] and EvoSuite with DSE [31], and they

achieved worse coverage than standard EvoSuite on every subject. The tools Sym-

stra [54] and Evacon [35] were not available at the time of the writing.

7
http://eclemma.org/jacoco/

ISSTA’17, July 2017, Santa Barbara, CA, USA Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè

Table 1: Effectiveness of JBSE/DHM and SUSHI configured with partial (DHMP, SUSHIP) and accurate (DHMA, SUSHIA) data
structure invariants (OK = valid outcomes, FP = False Positives)

Test cases Branch coverage Generation time (mm:ss)
Subjects DHMP SUSHIP DHMA SUSHIA DHMP SUSHIP DHMA SUSHIA DHMP SUSHIP DHMA SUSHIA

Branches LOC OK FP OK OK OK OK FP OK OK OK
sample 2 8 2 0 2 2 2 2 0 2 2 2 00:01 00:06 00:01 00:06
treemap 164 514 21 9 50 33 33 101 48 138 ∗144 ∗144 01:47 ‡120:00 00:13 05:26
avl 40 530 9 2 16 14 14 18 22 40 40 40 00:09 10:16 00:02 00:13
caching 36 211 9 1 15 10 10 25 6 ∗31 ∗31 ∗31 00:02 06:24 00:01 04:17
tsafe 36 607 §2 0 +12 §2 +10 5 0 ∗35 5 ∗35 04:33 05:49 00:44 03:11
gantt 26 404 3 2 5 8 8 5 4 16 ∗24 ∗24 †60:01 †60:55 00:08 01:28
closure01 279 7,766 3 0 4 §7 +13 11 0 11 45 104 †60:01 †66:13 14:05 39:27
closure72 23 5,972 0 3 +2 3 +3 0 #0 16 #0 18 00:28 ‡120:00 00:03 20:33

+ Test suite reveals the known faults # Test cases throw runtime exceptions † Symbolic execution terminated by timeout (1h)
§ Test cases for linear path conditions only ∗ Missed branches are infeasible ‡ Test generation terminated by timeout (2h)

Generation time). Columns DHM
P
, SUSHI

P
, DHM

A
, and SUSHI

A
re-

ports the results for JBSE/DHM and SUSHI with partial and accurate

invariants, respectively.

Test suites with partial invariants (Table 1, columns DHMP, SUSHIP).
When executed with partial invariants, SUSHI and JBSE/DHMmust

deal with sets of path conditions that may include spurious condi-

tions, that is, path conditions that correspond to unreachable pro-

gram states. In Table 1, columns OK report the number of valid test

cases (respectively, branches), that is, test cases instantiated from

satisfiable path conditions for both DHM
P
and SUSHI

P
. Columns

FP report the number of false positives (respectively, branches),

that is, test cases that correspond to spurious path conditions for

DHM
P
(SUSHI

P
generates only valid test cases). We detected the

false positives by manually inspecting the data structures instanti-

ated in the tests cases. For example, for treemap we found 9 test

cases that execute the program with unbalanced trees in input, thus

violating the invariants of the data structure.

In these experiments, SUSHI
P
largely outperformed DHM

P
in

soundness: DHM
P
instantiates a test case for every selected path

condition (both satisfiable and spurious), and thus generates false

positives for 5 out of 8 subject programs (red values in column

Test cases/DHMP
/FP of Table 1). SUSHI

P
produces test cases by

including only legal method calls, and thus does not generate false

positives by construction, albeit wasting time searching for con-

crete test cases for the spurious conditions, as shown in columns

Generation time/DHMP
and Generation time/SUSHIP. The SUSHIP

performance penalties are paid back with sound results.

False positive test cases produce unsound coverage data that

limit the practical relevance of the results. Column Branch cover-
age/DHMP

/FP of Table 1 reports in red the amount of false positive

branches, that is, branches covered only with false positive test

cases. For treemap, DHMP
reports a total amount of 149 covered

branches (101 + 48) which is greater than the 144 feasible ones, as

we deduced by inspecting the program.

SUSHI
P
largely outperforms DHM

P
in branch coverage too.

SUSHI
P
benefits from the soundness of the generated test cases

to enhance branch coverage, while DHM
P
suffers from false pos-

itives that obfuscate the validity of the coverage results. SUSHI
P

generates only test cases that cover feasible path conditions, and

thus incrementally considers path conditions to cover still missed

branches, while DHM
P
generates both valid and false positive test

cases, thus missing the opportunity of covering branches that it

wrongly considers as covered. Columns Branch coverage/DHMP
/OK

and Branch coverage/SUSHIP/OK indicate that SUSHI
P
obtained a

better branch coverage than DHM
P
in 6 out of 8 subject programs.

Test suites with accurate invariants (Table 1, columns DHMA,
SUSHIA). When executed with accurate invariants, both DHM

A

and SUSHI
A
work with the same non-spurious path conditions,

and should thus produce test suites that obtain the same coverage.

Surprisingly, our results (columns DHM
A
, SUSHI

A
) indicate subtle,

but relevant differences for tsafe, closure01 and closure72.
In tsafe and closure01, DHMA

generated fewer test cases than

SUSHI
A
, since DHM

A
fails to instantiate path conditions with non-

linear constraints not solved with Z3. These examples highlight

a core limitation of direct heap manipulation to deal with path

conditions that escape SMT theories. SUSHI robustly handles non-

linear path conditions in the search phase. SUSHI
A
generated 10 and

13 test cases that cover 35 and 104 branches in tsafe and closure01,
respectively, while DHM

A
correspondingly generated only 2 and 7

test cases that cover only 5 and 45 branches, respectively.

In closure72, DHMA
generated 3 test cases that assign values to

program variables declared as constants. These test cases throw

runtime exceptions and terminate before executing the target pro-

gram. This example highlights another limitation of direct heap

manipulation that can produce test cases that conflict with the

compile time assumptions of the program under test.

Accurate invariants largely improve the performance of SUSHI
A

over SUSHI
P
, since SUSHI

A
does not waste time with spurious

path conditions. Although DHM
A
may outperform SUSHI

A
in effi-

ciency, since SUSHI
A
executes a search algorithms after symbolic

execution, DHM
A
is intrinsically less sound, since it generates tests

that may raise exceptions, and cannot instantiate non-linear path

conditions. Moreover, the degree of accuracy of the invariants may

not be easily ascertained, thus jeopardising the trustability of the

results of JBSE/DHM, but not the ones of SUSHI.

In summary, our experiments provide empirical evidence that

SUSHI improves on approaches that combine symbolic execution

with direct heap manipulation in both soundness and coverage.

Comparing SUSHI with Pex and Seeker. Table 2 compares SUSHI
P

and SUSHI
A
against the best results of Pex, Seeker, and EvoSuite.

For each tool, the table reports the size of the generated test suites

Combining Symbolic Execution and Search-Based Testing ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 2: Comparative evaluation of SUSHI, Pex, Seeker, and EvoSuite

SUSHIP SUSHIA Pex Seeker EvoSuite
Subject
Program

Test
cases

Branch
coverage

Test
cases

Branch
coverage

Test
cases

Branch
coverage

Test
cases

Branch
coverage

Test
cases

Branch
coverage

sample 2 2 (100%) 2 2 (100%) 1 0 (0%) 2 0 (0%) 1 0 (0%)
treemap 50 138 (84%) 33 144 (88%) 10 11 (7%) 51 50 (25%) 30 144 (88%)
avl 16 40 (100%) 14 40 (100%) 11 25 (63%) 17 28 (70%) 14 40 (100%)
caching 15 31 (86%) 10 31 (86%) 9 11 (31%) 54 27 (75%) 8 29 (81%)
tsafe +12 35 (97%) +10 35 (97%) 10 13 (36%) 10 13 (36%) 7 24 (67%)
gantt 5 16 (62%) 8 24 (92%) 7 8 (31%) 7 8 (31%) 8 24 (92%)
closure01 4 11 (4%) +13 104 (37%) - - 7 43 (15%)
closure72 +2 16 (70%) +3 18 (78%) - - 8 10 (43%)

+
These test suites reveal the known fault in the corresponding subject programs.

(columns Test cases), and the target branches that each test suite ex-

ercises (columns Branch coverage). The grey background highlights

the best result for each subject.

The first four columns of Table 2 report the results of the exper-

iments conducted on the six subject programs for which we had

an equivalent C# version. Both SUSHI
P
and SUSHI

A
generated test

suites with better coverage than the test suites generated by Pex

and Seeker: SUSHI
P
generated 100 test cases that cover 95% of the

276 feasible branches of the six subjects, SUSHI
A
generated 77 test

cases that cover 100% of the feasible branches, Pex generated 48 test

cases that cover 25% of the feasible branches, and Seeker generated

141 test cases that cover 46% of the feasible branches.

The test suites generated with Pex and Seeker suffer from the

difficulty of static analysis in dealing with complex data structures.

Pex and Seeker succeed in generating test cases for simple data

structures but not for the complex ones, while SUSHI can effectively

generate test cases that exercise a larger set of data structures.

Our experiments thus provide preliminary evidence that SUSHI

generates test suites with a higher branch coverage than the test

suites generated with two popular approaches that combine sym-

bolic execution with static analysis.

4.4 RQ3: SUSHI wrt Complex Heap Inputs
We studied the data structures that uniquely characterise the test

cases generated with SUSHI as follows: (i) We extended the bench-

mark of comparative approaches to EvoSuite to include a represen-

tative test case generators that exploit approaches beyond symbolic

execution (column EvoSuite in Table 2), (ii) identified the branches

covered solely by SUSHI test suites, and (iii) inspected in details

the SUSHI test cases that executes those branches.

Table 2 shows that the SUSHI
A
test suites achieve better branch

coverage than all competitors for the subject programs, with Evo-

Suite reaching the same branch coverage for treemap, avl, and gantt.
We manually inspected the SUSHI

A
test cases that traverse the

branches covered solely by SUSHI and confirmed that SUSHI gen-

erates test cases that build the complex data structures required

to exercise important portions of the programs. For example, the

SUSHI
P
and SUSHI

A
test suites are the only suites that exercise

the branches of caching for removing an element from a list with a

full cache. Such branches require a test case that builds a list bigger

than the cache size (more than 20 nodes), removes enough nodes to

fill the cache (at least 20), and finally removes a further node that

exercises the considered case. Only SUSHI
P
and SUSHI

A
generate

test cases that instantiated such complex data structures, while

none of the competing approaches do.

EvoSuite achieves the best branch coverage among the compet-

ing approaches, but still fails in generating test cases for branches

that depend on input structures that are not explicitly captured in

the branch conditions, e.g., the one in Figure 1. SUSHI
A
achieves

the same coverage of EvoSuite on treemap, avl and gantt, and out-

performs EvoSuite on sample, caching, tsafe, closure01 and closure72.
Overall SUSHI

A
generated test suites that execute most exe-

cutable branches and reveal the known faults. In detail, SUSHI
A

generated test cases that cover all branches of sample and avl (100%
branch coverage), and all feasible branches of treemap, caching,
tsafe, and gantt. We manually verified that the uncovered branches

correspond to either dead code or unreachable code elements. The

SUSHI
A
test cases cover 37% and 78% of the branches of closure01

and closure72, respectively. We were not able to manually investi-

gate the reachability of the uncovered branches, since the classes

under test are coupled with too many other classes with non-trivial

size and behaviour, thus the missed branches might either be un-

reachable branches or depend on paths and inputs that exceeded

the symbolic execution bounds set in the experiments.

A closer examination of the experiment with closure01 indicates
that the low coverage achieved is strongly affected by the symbolic

execution bounds indeed. We executed SUSHI
A
on closure01 with

an upper bound of six nodes in the input parse trees, which makes

the symbolic executor JBSE explore 86,141 execution paths in 14

minutes. When executed with larger upper bounds, JBSE does not

terminate after several hours. This result indicates that the exe-

cution space of closure01 is likely very large and deep, and that

the JBSE depth-first path exploration may be a bottleneck for the

analysis. Different exploration strategies, like the ones discussed

by Cadar et al. [14], may improve the effectiveness of symbolic

execution and lead to better results. Despite such limitation, SUSHI

explores more branches in closure01 than the competing tools, and

is the only one that generates test cases that reveal the known fault.

A core technical contribution of this paper is the objective func-

tion (Section 3.1) that SUSHI uses to steer the generation of test

cases that instantiate path conditions with concrete inputs. In the

experiments with accurate invariants, SUSHI successfully found the

optimal solution for all objective functions for the subject programs,

converging consistently in all 10 re-executions within reasonable

time budgets, thus indicating the effectiveness of the objective func-

tion. Column Generation time/SUSHIA of Table 1 shows that in 6

out of 8 subjects the median time that SUSHI took to converge on

ISSTA’17, July 2017, Santa Barbara, CA, USA Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè

all path conditions is less than 6 minutes, while for closure01 and
closure72 the median time is 54 and 21 minutes, respectively.

In summary, SUSHI can indeed instantiate path conditions that

derive from the symbolic execution of programs with complex data

structures, and thus generate concrete test cases for test objec-

tives that depend on complex inputs and that exercise relevant

behaviours in the programs. As for any other symbolic execution

approach, the results of SUSHI depend on the path exploration

strategy. Our evaluation provides additional evidence of the differ-

ences and the complementarity between symbolic execution and

search-based software testing approaches [2, 22, 31, 35, 55].

4.5 Threats to validity
Threats to external validity may derive from the selection of case

studies. Our results are obtained on a relatively limited sample of

programs that provide some preliminary evidence of the feasibility

of the approach, but are far from being a solid set of experiments

with significant statistical validity. Nonetheless, the sample pro-

grams include commonly used data structures, and are representa-

tive of the class of programs that could mostly benefit from SUSHI,

that is, programs that use complex data structures as input. We

believe that our results clearly indicate a high potential of SUSHI to

automate the generation of concrete test cases for these programs.

We limited our comparison to Pex, Seeker, and EvoSuite, in

some cases due to the unavailability of other candidate tools. This

threat is mitigated by the representativeness of the choices: two

mature approaches, Pex and EvoSuite, and a tool that stresses the

combination of symbolic execution and static analysis, Seeker. The

comparison indicates the high potential of SUSHI.

Like all state-of-the-art symbolic execution approaches on data

structures [10, 48, 53], the efficiency of SUSHI depends on the ac-

curacy of the invariant specifications used. We reported on experi-

ments with partial invariant specifications, where we assume that

testers afford low or no cost for writing suboptimal invariants. Our

results show that SUSHI does not generate invalid test cases, thus

suffering less than other approaches when working with partial

invariant. We also reported on experiments with accurate invari-

ant specifications to investigate the ability of SUSHI of executing

program paths that depend on complex input structures.

5 RELATEDWORK
This paper presented SUSHI, a test case generation approach that

benefits from a novel combination of symbolic execution and search-

based techniques, to overcome a crucial limitation of many test

generation approaches that rely on directly manipulating the heap

memory to construct the input structures [1, 7, 33, 38, 48, 53]. Di-

rectly manipulating the heap may result in test cases that the devel-

opers can hardly understand and trust, especially when dealingwith

programs with complex ad-hoc data structures. These approaches

can benefit from our SUSHI approach—provided suitable objective

functions—to instantiate test cases composed of method sequences.

This paper paves the way for future research in this direction.

In Section 2, we discussed the achievements and limitations

of the main test generation approaches that rely solely on either

symbolic execution or search-based techniques, but not both. For

further details, readers can refer to the excellent surveys of Cadar et

al. [14, 15] and McMinn [44]. Our SUSHI approach is a significant

enhancement to test generation techniques based on symbolic exe-

cution, since SUSHI instantiates the path conditions into concrete

test cases that initialise the input objects through their APIs. Our ex-

periments suggest that SUSHI outperforms approaches that exploit

static analysis to identify legal initialisation sequences [50, 51].

We now briefly survey the main techniques that combine sym-

bolic execution and search-based software testing (SBST). Both

Lakhotia et al. and Dinges and Agha exploit meta-heuristic search

procedures to find numeric solutions for path conditions that in-

clude non-linear arithmetics and floating point variables that cannot

be effectively handled with SMT solvers [22, 42]. SUSHI handles

non-linear formulas in a similar fashion and extends the target

domain to complex data structures.

Symstra and Evacon combine SBST and dynamic symbolic execu-

tion (DSE) to maximise branch coverage [35, 54]. They use standard

SBST to produce method sequences, turn these method sequences

into parametric test drivers by replacing their primitive inputs with

symbolic variables, and then exploit DSE to find new relevant in-

puts. By construction, these approaches cannot execute program

paths that depend on data structures that were not handled in the

SBST step. Despite the difficulty of directly comparing SUSHI with

Symstra and Evacon, due to their unavailability, our results related

to EvoSuite suggest that identifying different initialisations of the

data structures, as in SUSHI, can lead to significant complementary

improvements with respect to just optimising the primitive inputs.

Another line of research exploits symbolic execution to optimise

the evolutionary algorithms used in SBST. Baars et al. synthesise

the execution conditions of sequences of branches, to improve the

fitness function of SBST [2]. Malburg and Fraser, and Galeotti et

al. extend search-based test generation with local search operators

that apply DSE during the search procedure [31, 43]. Lakhotia et

al. use symbolic execution to compute alias information for the

local search [41]. Xie et al. and Baluda both apply search-based

path selection strategies in symbolic executors to select the paths

with higher chances to execute uncovered branches [3, 55].

6 CONCLUSIONS
Modern automated test case generation techniques fall short when

the input requires non-trivial data structures. In this paper, we

propose a new approach to automatically generate test cases for

programs with complex data structures. We use symbolic execution

to generate path conditions that precisely characterise the depen-

dencies between the program paths and the input data structures.

We then turn the path conditions into optimisation problems that

we solve with search-based techniques. A solution of an optimisa-

tion problem is a test case that invokes a sequence of method calls

that generate the required data structures. Our evaluation shows

that the approach is effective in generating test cases for programs

with complex data structures as inputs, outperforming current test

generation techniques. We are currently working on widening our

experimental scope to further consolidate the results.

ACKNOWLEDGMENTS
This work was supported by the GAUSS project (PRIN-MIUR-

2015KWREMX) and by the EPSRC grant EP/N007166/1.

Combining Symbolic Execution and Search-Based Testing ISSTA’17, July 2017, Santa Barbara, CA, USA

REFERENCES
[1] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gómez-Zamalloa, and S. Gutierrez.

jPET: An Automatic Test-Case Generator for Java. In Proceedings of The Working
Conference on Reverse Engineering, WCRE ’11, pages 441–442. IEEE Computer

Society, 2011.

[2] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella, and T. Vos.

Symbolic search-based testing. In Proceedings of the International Conference on
Automated Software Engineering, ASE ’11, pages 53–62. IEEE Computer Society,

2011.

[3] M. Baluda. EvoSE: Evolutionary symbolic execution. In Proceedings of the 6th
International Workshop on Automating Test Case Design, Selection and Evaluation,
A-TEST ’15, pages 16–19. ACM, 2015.

[4] M. Baluda, P. Braione, G. Denaro, and M. Pezzè. Enhancing structural software

coverage by incrementally computing branch executability. Software Quality
Journal, 19(4):725–751, 2011.

[5] M. Baluda, G. Denaro, and M. Pezzè. Bidirectional symbolic analysis for effective

branch testing. IEEE Transactions on Software Engineering, 42(5):403–426, 2015.
[6] C. Barrett, M. Deters, L. Moura, A. Oliveras, and A. Stump. 6 years of SMT-COMP.

Journal of Automated Reasoning, 50(3):243–277, 2013.
[7] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on

java predicates. In Proceedings of the International Symposium on Software Testing
and Analysis, ISSTA ’02, pages 123–133. ACM, 2002.

[8] P. Braione, G. Denaro, A. Mattavelli, M. Vivanti, and A. Muhammad. Software

testing with code-based test generators: data and lessons learned from a case

studywith an industrial software component. Software Quality Journal, 22(2):311–
333, June 2014.

[9] P. Braione, G. Denaro, and M. Pezzè. Enhancing symbolic execution with built-in

term rewriting and constrained lazy initialization. In Proceedings of the European
Software Engineering Conference held jointly with the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ESEC/FSE ’13, pages 411–421.

ACM, 2013.

[10] P. Braione, G. Denaro, and M. Pezzè. Symbolic execution of programs with

heap inputs. In Proceedings of the European Software Engineering Conference
held jointly with the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE ’15, pages 602–613, 2015.

[11] P. Braione, G. Denaro, and M. Pezzè. JBSE: a symbolic executor for java programs

with complex heap inputs. In Proceedings of the European Software Engineer-
ing Conference held jointly with the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE ’16, pages 1018–1022, 2016.

[12] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In

Proceedings of the International Conference on Automated Software Engineering,
pages 443–446. IEEE Computer Society, 2008.

[13] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In Proceedings of the
Symposium on Operating Systems Design and Implementation, OSDI ’08, pages
209–224. USENIX Association, 2008.

[14] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and

W. Visser. Symbolic execution for software testing in practice: Preliminary

assessment. In Proceedings of the International Conference on Software Engineering,
ICSE ’11, pages 1066–1071. ACM, 2011.

[15] C. Cadar and K. Sen. Symbolic execution for software testing: Three decades

later. Communications of the ACM, 56(2):82–90, Feb. 2013.

[16] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic robustness tester for java.

Proceedings of the Symposium on Principles and Practice of Parallel Programming,
34(11):1025–1050, Sept. 2004.

[17] L. Cseppento and Z. Micskei. Evaluating symbolic execution-based test tools. In

Proceedings of the International Conference on Software Testing, Verification and
Validation, ICST ’10, pages 1–10. IEEE Computer Society, 2015.

[18] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer. Modeling readability to

improve unit tests. In Proceedings of the European Software Engineering Conference
held jointly with the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE 2015, pages 107–118. ACM, 2015.

[19] L. De Moura and N. Bjørner. Satisfiability modulo theories: Introduction and

applications. Communications of the ACM, 54(9):69–77, 2011.

[20] X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic execution

for checking strong heap properties of open systems. In Proceedings of the
International Conference on Automated Software Engineering, ASE ’06, pages

157–166. ACM, 2006.

[21] G. D. Dennis. Tsafe: building a trusted computing base for air traffic control

software. Master’s thesis, Massachusetts Institute of Technology, 2003.

[22] P. Dinges and G. Agha. Solving complex path conditions through heuristic

search on induced polytopes. In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’14, pages 425–436. ACM,

2014.

[23] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation

with testing techniques: An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435, 2005.

[24] B. Dutertre. Yices 2.2. In Proceedings of the International Conference on Computer
Aided Verification, CAV ’2014, pages 737–744. Springer, 2014.

[25] J. Edvardsson. A survey on automatic test data generation. In Proceedings of the
Second Conference on Computer Science and Engineering, pages 21–28. ECSEL,
1999.

[26] G. Fraser and A. Arcuri. 1600 faults in 100 projects: Automatically finding faults

while achieving high coverage with evosuite. Empirical Software Engineering,
20(3):611–639, 2013.

[27] G. Fraser and A. Arcuri. Evosuite at the sbst 2013 tool competition. In Proceedings
of the 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation Workshops, ICSTW ’13, pages 406–409. IEEE Computer Society,

2013.

[28] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Transactions on
Software Engineering, 39(2):276–291, 2013.

[29] G. Fraser and A. Arcuri. Evosuite at the sbst 2015 tool competition. In Proceedings
of the International Workshop on Search-Based Software Testing, SBST ’15, pages

25–27. IEEE Computer Society, 2015.

[30] G. Fraser and A. Arcuri. Evosuite at the sbst 2016 tool competition. In Proceedings
of the International Workshop on Search-Based Software Testing, SBST ’16, pages

33–36. ACM, 2016.

[31] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving search-based test suite gen-

eration with dynamic symbolic execution. In Proceedings of the International
Symposium on Software Reliability Engineering, ISSRE ’13. IEEE Computer Society,

2013.

[32] J. P. Galeotti, N. Rosner, C. G. López Pombo, andM. F. Frias. Analysis of invariants

for efficient bounded verification. In Proceedings of the International Symposium
on Software Testing and Analysis, ISSTA ’10, pages 25–36. ACM, 2010.

[33] M. Gligoric, T. Gvero, V. Jagannath, S. Khurshid, V. Kuncak, and D. Marinov. Test

generation through programming in UDITA. In Proceedings of the International
Conference on Software Engineering, ICSE ’10, pages 225–234. ACM, 2010.

[34] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random test-

ing. In Proceedings of the Conference on Programming Language Design and
Implementation, PLDI ’05, pages 213–223. ACM, 2005.

[35] K. Inkumsah and T. Xie. Improving structural testing of object-oriented programs

via integrating evolutionary testing and symbolic execution. In Proceedings of
the International Conference on Automated Software Engineering, ASE ’08, pages

297–306. IEEE Computer Society, 2008.

[36] S. Jha, R. Limaye, and S. A. Seshia. Beaver: Engineering an efficient smt solver for

bit-vector arithmetic. In Proceedings of the International Conference on Computer
Aided Verification, CAV ’09, pages 668–674. Springer, 2009.

[37] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults to enable

controlled testing studies for Java programs. In Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA ’14, pages 437–440. ACM,

2014.

[38] S. A. Khalek, G. Yang, L. Zhang, D. Marinov, and S. Khurshid. Testera: A tool for

testing java programs using alloy specifications. In Proceedings of the International
Conference on Automated Software Engineering, ASE ’11, pages 608–611. IEEE

Computer Society, 2011.

[39] S. Khurshid, C. S. Pǎsǎreanu, and W. Visser. Generalized symbolic execution

for model checking and testing. In Proceedings of the International Conference
on Tools and Algorithms for Construction and Analysis of Systems, TACAS ’03.

Springer, 2003.

[40] B. Korel. Automated software test data generation. IEEE Transactions on Software
Engineering, 16(8):870–879, 1990.

[41] K. Lakhotia, M. Harman, and P. McMinn. Handling dynamic data structures in

search based testing. In Proceedings of the conference on Genetic and Evolutionary
Computation, GECCO ’08, pages 1759–1766. ACM, 2008.

[42] K. Lakhotia, N. Tillmann, M. Harman, and J. De Halleux. Flopsy: Search-based

floating point constraint solving for symbolic execution. In Proceedings of the
International Conference on Testing Software and Systems, ICTSS ’10, pages 142–
157. Springer, 2010.

[43] J. Malburg and G. Fraser. Combining search-based and constraint-based testing.

In Proceedings of the International Conference on Automated Software Engineering,
ASE ’11, pages 436–439. IEEE Computer Society, 2011.

[44] P. McMinn. Search-based software test data generation: a survey. Software
Testing, Verification and Reliability, 14:105–156, 2004.

[45] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test

generation. In Proceedings of the International Conference on Software Engineering,
ICSE ’07, pages 75–84. ACM, 2007.

[46] R. Pargas, M. J. Harrold, and R. Peck. Test-data generation using genetic algo-

rithms. Software Testing, Verification and Reliability, 9(4):263–282, 1999.
[47] M. Pezzè and M. Young. Software Testing and Analysis: Process, Principles and

Techniques. Wiley, 2007.

[48] N. Rosner, J. Geldenhuys, N. Aguirre, W. Visser, and M. F. Frias. BLISS: improved

symbolic execution by bounded lazy initialization with SAT support. IEEE
Transactions on Software Engineering, 41(7):639–660, 2015.

ISSTA’17, July 2017, Santa Barbara, CA, USA Pietro Braione, Giovanni Denaro, Andrea Mattavelli, and Mauro Pezzè

[49] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and explicit path

model-checking tools. In Proceedings of the International Conference on Computer
Aided Verification, CAV ’06, pages 419–423. Springer, 2006.

[50] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z. Su. Synthesizing

method sequences for high-coverage testing. In Proceedings of the Conference
on Object-Oriented Programming Systems and Applications, OOPSLA ’11, pages

189–206. ACM, 2011.

[51] N. Tillmann and J. de Halleux. Pex: White box test generation for .NET. In

Proceedings of the International Conference on Tests and Proofs, TAP ’08, pages

134–153. Springer, 2008.

[52] P. Tonella. Evolutionary testing of classes. In Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA ’04, pages 119–128. ACM,

2004.

[53] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input generation with java

pathfinder. In Proceedings of the International Symposium on Software Testing
and Analysis, ISSTA ’04, pages 97–107. ACM, 2004.

[54] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra: a framework for gener-

ating object-oriented unit tests using symbolic execution. In Proceedings of the
International Conference on Tools and Algorithms for Construction and Analysis of
Systems, TACAS ’05, pages 365–381. Springer, 2005.

[55] T. Xie, N. Tillmann, P. de Halleux, andW. Schulte. Fitness-guided path exploration

in dynamic symbolic execution. In Proceedings of the International Conference on
Dependable Systems and Networks, DSN ’09, pages 359–368, 2009.

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Search-Based Software Testing
	2.2 Symbolic Execution with Heap Inputs

	3 The SUSHI Approach
	3.1 The SUSHI Objective Function
	3.2 Prototype

	4 Evaluation
	4.1 Subject Programs
	4.2 Experimental Setup
	4.3 RQ1/RQ2: SUSHI wrt Symbolic Approaches
	4.4 RQ3: SUSHI wrt Complex Heap Inputs
	4.5 Threats to validity

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

