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Abstract—Despite the best design practices and testing
techniques, many faults exist and manifest themselves in
deployed software. In this paper we propose a self-healing
framework that aims to mask fault manifestations at runtime
in Java applications by automatically applying workarounds.
The framework integrates a checkpoint-recovery mechanism
to restore a consistent state after the failure, and a mechanism
to replace the Java code at runtime to apply the workaround.
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I. INTRODUCTION

Reusable components are hard to test in isolation, as it is
usually impossible to imagine all the possible scenarios in
which they can be used. It is therefore good practice to test
the integration of such components within the application
that is using them. However, many integration faults may
still escape the testing process, and these faults may manifest
themselves when the system has been already deployed.

As in our previous work, we present a technique to
augment software systems with self-healing capabilities by
exploiting the intrinsic redundancy of those systems [1].
Our intuition is that software systems are to some extent
redundant, in the sense that the same functionality may
be implemented in different ways. For instance, container
classes typically offer redundant interfaces, with operations
such as add(element) and addAll(collection) that can be used
interchangeably with minor adaptations (for example, add(x)
can be rewritten as addAll(collection(x))). We refer to those
sequences of operations, which are functionally equivalent
according to the specifications, as equivalent sequences.
Sometimes this redundancy extends beyond the interface,
and two equivalent sequences might actually execute dif-
ferent code. In this case, when one sequence of operation
fails, the execution of a supposedly equivalent one might
avoid the failure. We refer to such supposedly equivalent
sequences that are in fact correct as workarounds.

In prior work, we developed the idea of finding and
applying workarounds automatically in response to fail-
ures [1]. We did that in the context of Web applications,
which allow us to make important simplifying assumptions.
One such assumption is that the application is stateless.
More specifically, we assume that the client side of the
application, which consists of JavaScript code embedded
in Web pages, is stateless, so we can apply a workaround

by simply changing the failing code and then reloading the
page. Second, we rely on the user to report a failure. Third,
we assume that the fault is located in the current page.
Finally, we select and apply workarounds after the Web page
is completely loaded and rendered (i.e., when the JavaScript
code has run to completion).

We now extend this technique to more general Java
applications, where some of those initial assumptions do
not hold. As a first and crucial issue, we must consider
the possibility that the failure would corrupt the state of
the application. Therefore, before applying a workaround,
we must restore the application to a consistent state. The
second issue is that failures may not have visible effects,
or users might be too slow in noticing the problem, or
there might not even be a user to act as a failure detector.
In practice, if we want to generalize the application of
automatic workaround, we also need an automatic failure
detection mechanism. Third, the root cause of a failure may
be located far from the failure manifestation. So, in order
to know where to apply a workaround, we also need a
fault localization mechanism. Finally, we have to apply a
workaround at runtime, which means changing the code of
classes that are already loaded and instantiated in the JVM,
without waiting for the application to terminate and restart.

At a high conceptual level, our technique works as fol-
lows: We rely on a failure detection mechanism whereby
failures can be specified through assertions or some other
specific mechanisms [2], [3], and can be signaled through
runtime exceptions. We then rely on a checkpoint-recovery
mechanism to handle the state of the application. Finally,
we rely on equivalent sequences to provide an alternative
execution to possibly avoid the failure.

II. DEALING WITH STATE AND RUNTIME UPDATES

Our technique aims to mask the effect of faults in Java
applications at runtime, and in particular it aims to avoid
functional failures that are caused by faulty interactions
between components. These components can be either single
classes or third-party libraries. More precisely, we distin-
guish between target components, for which we have a set
of equivalent sequences, and client components, which are
using such target components. In the example of Figure 1,
the client component OrderedList creates a list of sorted
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Figure 1. Sample target and client components

items using the target component Container, which provides
the storing and sorting functionalities.

We assume that a list of equivalent sequences is available
for the target components. We thus expect developers (or
others) to specify that, for example, adding several elements
with the addAll method is equivalent to adding each element
one at a time with the add method, and that bubbleSort and
quickSort are functionally equivalent.

Our technique comes into play whenever the interaction
between a client component and a target component leads
to a failure. We currently rely on runtime exceptions to
detect a failure. To avoid interferences with the intentions
of the developer, we ignore exceptions that are already
handled within the original program. During the healing
phase, a fault-localization mechanism (not yet integrated
in our prototype) guides the selection of the equivalent
sequences to be tried as workarounds. Then, a checkpoint-
recovery mechanism brings the state of the application back
to a consistent state, and the healing mechanism changes the
code in the client component by replacing some calls to the
target component with an equivalent sequence. Finally, the
execution restarts with the new code from the recovery point.
If the chosen equivalent sequence avoids the failure, the
execution goes on without further interruptions. Otherwise,
new equivalent sequences can be tried until there are no
equivalent sequences left.

As an example, imagine that a set of items are added to the
ordered list with addElements and sorted with sortList, and
that a failure occurs during the execution of sorzList. Imagine
the failure is caused by the addAll method that creates a
wrongly terminated list. However, since we currently do not
use any fault localization technique, we have no indication
on where the fault is. Our technique first restores the state of
the container to the point before the execution of the sorzList
method, and then tries to sort the elements in the container
using quickSort instead of bubbleSort. The execution leads
to another exception, and since there are no equivalent
sequences left to try for the sorting methods, the state is
restored to the point before the execution of the addElements
method. Then, the addAll invocation is substituted with a
sequence of repeated add, and this time the modified code
executes successfully, creating the ordered list and avoiding

the failure. With a precise fault localization technique, it
would have been possible to immediately apply and execute
the second equivalent sequence.

We now present in more detail the checkpoint-recovery
and equivalent-sequence substitution mechanisms.

Checkpoint-recovery: 1t is one of the core components
of our technique, as it allows to save the state of the
application in chosen points, and then to restore it to those
points when a failure occurs. The crucial difficulty is to
choose where to create checkpoints. Checkpoints should
not be too frequent in order to limit runtime overhead and
so that they would cover potential equivalent sequences.
On the other hand, they should not be too sporadic either,
since they may also cover operations such as input/output
operations that may be difficult or impossible to roll back.
Our technique identifies those points by looking for methods
that invoke operations of the target components. We call
such methods Roll-Back Areas (RBAs), and we create a
new checkpoint at the entry point of each RBA. Moreover,
to limit the memory overhead caused by checkpoints, it is
crucial to include in the checkpoint only those parts of the
application that may be affected by the failure. To do this,
we use static data-flow analysis to instrument the byte-code
such that only the variables that are actually redefined will
be saved before their redefinition. Then, a recovery amounts
to simply restoring all the variables whose values were saved
in the checkpoint.

Applying equivalent sequences: After restoring the
state of the application to the entry point of the RBA, our
technique replaces part of the code in this area with an equiv-
alent sequence. Unlike dynamic programming languages
such as Python, Smalltalk, and JavaScript, that offer the
possibility to change the behavior of objects at runtime, Java
does not provide such a native capability. To implement it
ourselves, we apply the equivalent sequences to the original
source code, and then recompile the newly transformed
class. Finally, we take advantage of the Java Virtual Machine
Tool Interface facilities to replace the body of the RBA
method, such that the RBA can be re-executed with a new
code and without stopping the application.
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