
An Industrial Case Study of the Effectiveness of Test Generators

Pietro Braione, Giovanni Denaro
University of Milano-Bicocca

Milano, Italy
{braione|denaro}@disco.unimib.it

Andrea Mattavelli, Mattia Vivanti
University of Lugano
Lugano, Switzerland

{andrea.mattavelli|mattia.vivanti}@usi.ch

Ali Muhammad
VTT Technical Research Center of Finland

Tampere, Finland
ali.muhammad@vtt.fi

Abstract—Automatic test generators pursue some type of
systematic coverage of the program code or heuristic sampling
of the program inputs. Test generators are effective after the
assumption, often (enthusiastically) embraced by researchers,
that the generated test cases produce informative data for
domain experts, e.g., pinpoint important bugs. This paper
investigates the validity of such assumption through a case
study of using test generators on industrial software with
nontrivial domain-specific peculiarities. Our results properly
enhance the available body of knowledge on the strengths and
weaknesses of test generators.

I. INTRODUCTION

Many modern techniques and tools for software testing
embody capabilities to automatically generate test cases.
This paper uses the terminology test generators to refer
to these techniques and tools. Test generators promise sig-
nificant impact on the testing practice, since they promote
extensively tested software within reasonable effort and cost
bounds.

Test generators pursue some form of systematic explo-
ration of the input space of the program under test. We clas-
sify test generators as random, path-crawling or coverage-
driven. Random test generators model the input space by a
set of random variables and generate test cases by extracting
random samples accordingly [1], [2], [3], [4]. Path-crawling
test generators formulate the test generation problem as
the one of satisfying the executability conditions of the
possible program paths, typically derived through some type
of symbolic analysis of the program [5], [6], [7], [8], [9],
[10]. Coverage-driven test generators explicitly steer the
test generation process towards yet uncovered elements,
according to adequacy criteria such as statement or branch
coverage [11], [12], [13], [14], [15], [16], [17], [18]. We
survey these technologies in more detail in Section II.

This paper studies the effectiveness of test generators on
industrial software. It reports on a case study that confronts a
(combination of a) set of state-of-the-art test generators with
the testing of a family of programs with nontrivial domain-
specific peculiarities. The subject of study is a software
component of a real-time and safety critical control system
that remotely operates maintenance robots within a nuclear
fusion power plant. The component is programmed in C,
embeds several floating point non-linear arithmetics and

integrates within a time dependent control task specified in
LabView, a graphical language to design embedded systems.
The study considers four incremental versions of this com-
ponent. Our study addresses the overall research question on
whether test cases yielded by test generators are effective,
meaning that they can produce informative data for domain
experts, such as, pinpointing unknown bugs or undesirable
program behaviors, at complement of manual testing.

Whilst many papers argue that test generators can achieve
effective results, we see weaknesses of the previous studies
that call for empirical data as contributed by this paper.

The amount of papers that report on industrial benchmarks
is limited. Many papers consider codes from student work or
programming libraries [1], [4], [16]. Even when that is not
the case, the subject programs mostly handle integer-typed
variables, thus simplifying the job of the test generators.
Our study challenges test generators to deal with industrial
programs that exploit floating point arithmetics to large
extent. It enlightens that the scarce support of floating point
arithmetics in current (non random) test generators is a
major hinder for the transfer of this promising technology
to industry, and should be thus addressed as a top priority
by the researchers in the field.

Many popular test generators are presented as tools to un-
veal program crashes or violations of specification contracts
implemented as assertions in the code [1], [2], [4], [7], [9],
[5], [10]. While these are interesting types of failures, it
is not clear whether they should be the prevalent (or the
only) target for test generators. In facts, the failures found
in our study never crashed the subject programs, including
low level divisions by zero that were silently propagated as
NaN values.

Several experiments only assess the relative effectiveness
of test generators, based on code coverage indicators [3], [9],
[14], [19], [16], [17], [20]. These data give a weak feedback
on the effectiveness of the approach. We use code coverage
as the means to steer the test generation process, but assess
effectiveness as the ability of producing informative data for
domain experts. We contribute novel empirical evidence that
test generators can expose both unknown (and subtle) bugs
in the considered industrial programs. Our results confirm
the high potential of test generators to promote significant
boost of effectiveness of software testing in practice.



II. APPROACHES TO TEST GENERATION

This section surveys the main approaches to automatic
test generation.

Random testing: Random testing consists of randomly
sampling the input space of the program, and running the
program against the obtained random inputs [1], [2], [3].
Random testing has the distinctive advantage of possibly
being the least expensive strategy as it quickly finds large
amounts of test cases, without any analysis of the program
structures, nor the source code. On the negative side, it is
substantially unable to elicit program behaviors associated
with small or singular subsets of the inputs. Adaptive random
testing attempts to improve the effectiveness of random
testing by controlling how the test cases are distributed over
the input domain [4].

Path-crawling testing: Path-crawling testing looks for
inputs that exercise the program paths [7], [8], [9]. Path-
crawling testing is structural, meaning that it requires access
to the program code. It will elicit behaviors that entail
distinct flows of instructions, which cannot be easily spot
by randomly sampling the input space.

Path-crawling test generators usually embody some vari-
ant of symbolic execution, a program analysis technique that
simulates the execution of programs over symbolic data.
Symbolic execution computes the path conditions, that is,
the executability conditions of the simulated program paths.
The test generators then rely on external decision procedures
(solvers) to solve the path conditions and obtain test cases.
The final precision of the techniques, that is, the paths for
which exercising inputs can be indeed found, depends on
the theories that can be successfully handled by the the
underlying solver.

An efficient variant of the technique is concolic testing [5],
[6], [19], [21], [22]. Concolic testing merges random and
path-crawling testing based on symbolic execution, aimed
at improving over both. Starting from an initial test suite,
possibly obtained by random testing or designed by test
analysts, concolic testing performs symbolic execution along
the control flow paths exercised by the available test cases.
Throughout the resulting path conditions, it then negates
clauses at selected points to obtain the path conditions of
not-yet-covered paths, and solves them to generate new
test cases. These are fed back to the next iterations of the
procedure. A distinctive characteristic of concolic testing is
to heuristically exploit data from the concrete executions to
approximate path conditions within the theory handled by
the underlying solver.

Coverage-driven testing: In this paper, we use the
terminology coverage-driven testing to indicate those ap-
proaches that augment the test generation process with the
explicit knowledge of which coverage targets have not been
executed yet, according to an adequacy criterion of interest,
e.g., statement or branch coverage. These approaches moni-
tor the program code for the coverage targets covered by the

generated test cases, and steer the subsequent test generation
activity towards yet uncovered targets.

Some approaches leverage optimization algorithms, using
goal and fitness functions derived from symbolic path condi-
tions and information on the uncovered code elements [11],
[12], [13]. Other approaches extend path-crawling testing
with coverage-awareness, according to heuristics that prior-
itize paths with higher chances of increasing coverage [14],
[15], [16]. Yet other proposals exploit the incremental anal-
ysis of the (in)feasibility conditions of the coverage targets
within the test generation procedure [17], [18].

III. SUBJECT OF THE STUDY

ITER is part of a series of experimental reactors which
are meant to investigate the feasibility of using nuclear
fusion as a practical source of energy and demonstrate
the maintainability of such plants [23], [24]. Due to very
specialized requirements, the maintenance operations of
ITER reactor demand the development and testing of several
new technologies related to software, mechanics, electric
and control engineering. Many of these technologies are
under investigation at Divertor Test Platform (DTP2) at
VTT Technical Research Centre of Finland [25]. DTP2
embeds a real-time and safety critical control system for
remotely operated tools and manipulation devices to handle
the reactor components for maintenance [26]. The control
system is implemented using C, LabVIEW and IEC 61131
programming languages.

The software component chosen for this study is part of
the motion trajectory control system of the manipulation
devices. The software is implemented in C. It provides an
interface between the operator and the manipulator. The
operator inputs the target position of the manipulator, along
with the maximum velocity, initial velocity, maximum accel-
eration and maximum deceleration, as physical constraints
on the generated trajectory. As a result, the software plans
the movement of the manipulator, interpolating a trajectory
between two given point in n-dimensional space, where n is
the number of physical joints in manipulator. It returns out-
puts in the form of smooth motions, so that the manipulator’s
joints accelerate, move and decelerate within the physical
bounds until the target position. This avoids the mechanical
stress on the structure of the manipulator to ensure its
integrity and safety. It also keeps the desired output forces
of the joints’ actuators in check. The correctness of such
software plays a key role in the reliability of the control
system of the ITER maintenance equipment.

The software aims to produce the trajectories in such a
way that all the joints start and finish the motion at the same
time. This constraint is fulfilled by slowing down the motion
of certain joints and it is ensured that the acceleration and
velocity constraints are not violated for any of the joints.
The software ensures that all joints finish the motion at the
same time by slowing down acceleration and velocities for



certain joints. The component is designed to be compiled
as Dynamic Link Library (DLL) to work with Matlab or
LabVIEW.

The study considers four incremental versions of the
subject software. Code size ranges between 250 and 1,000
lines of code. The number of branches ranges between 36
and 74. All versions include 6 functions with maximum
cyclomatic complexity equal to 11.

Baseline version: The baseline version is the main
working implementation of the software, which can be
compiled to run in LabVIEW real-time environment. This
version was used to test the motion characteristics of a water
hydraulic manipulator.

Platform change (buggy) version: The second version
considered in the study is fundamentally a platform change
porting of the baseline version. This version provides almost
the same functionality, but is designed to compile as a
DLL to work in the Matlab Simulink environment. It was
implemented to simulate and plan the motions in the virtual
environment before executing it on real manipulator, aiming
to enhance the safety of operations.

Platform change (buggy) version: The third version
considered in the study is a bug fix of the second one. In
facts, the above Matlab version contains a particular bug
causing manipulator to violate the maximum velocity and
acceleration limits. This bug remained in the software for
several years before it was detected and fixed in this version.

New implementation: The fourth version considered
in the study is a new, recently proposed, implementation
to obtain the same functionality, but to rectify unwanted
behaviors in the previous implementations. The component
has not been tested in the real environment yet, and thus it is
not yet known if this new implementation entirely provides
the proper functionality.

IV. METHODOLOGY

A. The Test Generator

We have instantiated automatic test generation based on
the tools CREST ([14]) and ARC-B ([27]). CREST supports
random testing, concolic testing and coverage-driven testing,
while ARC-B specifically addresses coverage-driven testing.
We have combined these tools in a four-stage test generator
(concretely engineered as a shell script that calls the tools
sequentially) that pursues the maximization of branch cov-
erage. The test generator works as follows.

In the first stage, the test generator runs CREST in
concolic testing mode, configured for depth-first traversal
of the program paths. Offline we have verified that, for the
programs considered in our study, none of the other path-
crawling heuristics supported by CREST performed better
than depth-first traversal. Throughout the concolic proce-
dure, the test generator monitors the generated test cases
against the program under test and retains only the test cases
that result to increasing branch coverage over the previous

ones. The process is continued up to saturation, defined as
experiencing no coverage increase for a configurable (set
to 10,000) budget of iterations. This definition of saturation
applies to the next stages of the test generator too.

In the second stage, the test generator runs CREST in
random testing mode until saturation, and again it retains
only the test cases that result to increase of coverage.

In the third and fourth stage, the test generator pursues
additional coverage in the way of coverage-driven testing
using CREST and ARC-B, respectively. The coverage-driven
testing mode of CREST extends concolic testing with a par-
ticular heuristics that weights the selectable paths according
to the distance from the not-yet-covered branches, and takes
into account the number of unsuccessful attempts to follow
specific subpaths to not-yet-covered branches in previous
iterations [14]. ARC-B addresses coverage-driven testing by
incrementally computing (and then solving) the executability
conditions of the not-yet-covered branches [27]. Before
either stage, the test generator sets the coverage targets
according to the branches that were not covered in the
preceding stages, and then runs the tools until saturation,
retaining the test cases that increase coverage.

Our test generator applies four specific test generation
strategies in a specific order. Being primarily interested in
assessing the effectiveness of automatically generable test
cases, we did not look into applying these strategies in
isolation or trying alternative orderings of the strategies, nor
we have used all possible strategies (e.g., our test generator
does not encompass search-based approaches). Any claim
about the relative strengths of the test generation strategies
is therefore out of the scope of this paper.

We further adapted our test generator to work in test suite
augmentation mode [28]. In this mode, the test generator
inputs an already available test suite, and runs it against the
the program under test before the first stage. Throughout the
test generation process, it then retains only the test cases
that generate additional coverage over the input test suite.
We used the test augmentation mode when generating test
cases for the non-baseline versions of the subject software.

B. Dealing with Floating Point Arithmetics
The industrial software considered in our study exploits

floating point arithmetics in most computations. Conversely,
all above CREST’s and ARC-B’s test generation modes (but
random testing) handle effectively only computations over
integers, the reason being the limits of the underlying solvers
to reason over the theory of reals with discrete floating
point representation. We tackled this problem by reshaping
the subject programs on top of a programming library that
simulates the floating point semantics over integer-typed
variables.1 This yielded indeed an analyzable program, but
costed a factor-10 increase in the number of branches in the
analyzed programs.

1http://www.jhauser.us/arithmetic/SoftFloat.html



Worth mentioning, we have also tried the approach of
approximating the floating point computations with fixed
point counterparts. This had the advantage of only slightly
increasing the dimension of the code. The resulting loss of
precision affected the correctness of the analysis to large
extent, yielding several spurious executions and crashes of
the programs. We discarded this latter approach on this basis.

For all generated test suites, we finally re-computed the
coverage indicators by executing the test cases against the
original subject programs (with Gcov2). Our goal was to
assess the absence of spurious executions caused by the
inconsistencies between the original implementation and the
floating point simulation library. It also served to polish
the coverage data from the figures related to the library.
We did not find any spurious execution. This confirms that
the floating point simulation library correctly simulates the
floating point computations of our subject programs.

C. Test Oracles

To assess the effectiveness of these tests, we could not rely
on automatic test oracles, such as code assertions in the style
of design-by-contract, since the subject programs contained
no such assertions. No test case resulted to runtime excep-
tions or program crashes either. Even though (as we further
detail below) there were happening cases of underflows and
divisions by zero for some floating point computations, the
standard semantics of floating point operations handles these
exceptional cases by returning special values, such as, NaN
(not a number) or Inf (infinity). These values were silently
propagated by the subject programs.

We inspected the test outcomes by looking into the tra-
jectories of the manipulator’s joints generated by the subject
programs. The subject programs yield the trajectory data of
the joints as 6-tuples of floating point values. Each 6-tuple
represents the trajectory of a joint by the times (three values)
up to which the joint has to accelerate, cruise at peak velocity
and decelerate, respectively, and the corresponding (other
three values) acceleration, peak velocity and deceleration in
each phase. For each test case, we collected and analyzed
the trajectory data in two forms: the values of the yielded
6-tuples and the plots of the resulting movements of the
joints and their velocities over time. We searched the 6-
tuples for (unexpected) 0, NaN or Inf values, and the
plots for unexpected or inconsistent shapes across the subject
programs. We were supported by VTT experts for the
analysis of the plots.

All test suites and problem reports from our testing
activity have been submitted to developers of VTT to collect
the feedback of domain experts on the relevance of the
generated test cases and the correctness of our observations.

2Gcov is part of the GNU Compiler Collection.

Table I
TEST CASES (AND COVERAGE) PER TEST GENERATOR’S STAGES

Upgrades over baseline version

B
as

el
in

e
ve

rs
io

n Platform
change
(buggy)

Platform
change
(fixed)

New im-
plemen-
tation

#Branches 96 152 116 58

#T
es

t
ca

se
s

fr
om

previous version
test suite n.a. 20 32 20
(Branch coverage) (70%) (82%) (81%)
concolic testing
(stage 1) 9 9 - 2
(Branch coverage) (68%) (86%) - (83%)
random testing
(stage 2) 8 3 - 1
(Branch coverage) (77%) (86%) - (83%)
coverage-driven
CREST (stage 3) 1 - - -
(Branch coverage) (80%) - - -
coverage-driven
ARC-B (stage 4) 2 - - -
(Branch coverage) (84%) - - -

TOTAL 20 32 32 23
(Branch coverage) (84%) (86%) (82%) (83%)

V. RESULTS

We have run the four-stage test generator described in
previous section against the subject programs. Table I sum-
marizes the number of test cases generated for each program
through the stages of the test generator, and the coverage
after each stage. Recall that each stage ran incrementally
over the test cases generated at the preceding stage, retaining
only the test cases that increased the branch coverage.

Below we describe the problematic behaviors revealed by
the automatically generated test suites, grouped by subject
program. Other than revealing the known bug, these include
relevant and previously unknown problems.

Baseline version: For the baseline version, that is, the
reference LabVIEW version of the component under test, the
test generator produced 20 test cases that cover 84% of the
branches. The concolic and random stages generated most
test cases, 9 and 8, respectively, while the coverage-driven
stages contributed 3 test cases only.

Table II reports trajectory data (columns Output) yielded
by the baseline program for the inputs (columns Input) of
some test cases (column Test#). The test cases are referred
by their position in test suite according to the order in which
they are yielded by the test generator. The inputs include
maximum and initial velocity, maximum acceleration and
maximum deceleration of the joints. Origin and destination
positions are omitted for space reasons. The outputs are the
6-tuples of trajectory data.



Table II
TRAJECTORY DATA COMPUTED BY THE BASELINE PROGRAM FOR SOME AUTOMATICALLY GENERATED TEST CASES

Input Output

Max
velocity

Initial
velocity

Max ac-
celeration

Max de-
celaration

Accelerate Keep peak velocity Decelerate
Test# for (s) at (m/s2) for (s) at (m/s) for (s) at (m/s2)

6 1.4e-45 0.0 5.0 1.4e-45 0.0 5.0 inf 1.4e-45 0.0 1.4e-45

19 5.0 0.0 0.0 0.0 0.0 -0.0001 inf -0.0 0.0 -0.0001

20 5.0 0.0 2.0 -1.0 0.0 -2.0 inf -0.0 -0.0 1.0

Table II shows that the program fails to handle very
small input values (test case 6), and combinations of the
input parameters that include all zero (test case 19) or
some negative (test case 20) values of the maximum ac-
celeration/deceleration of the joints. The failures display as
unexpected 0 and Inf values in the outputs. Debugging
revealed that the failure of test case 6 is due to floating
point underflows in a multiplication that involves the small
values, while the failures of test cases 19 and 20 derive from
divisions by zero, in turn caused by a program’s function that
returns 0 for undealt inputs. We collected from VTT experts
the feedback that, although these inputs are hardly showing
up (e.g., the program is currently never used with negative
inputs), such (unknown) problems call for strengthening the
robustness checks in the program to avoid future issues.

Platform change (buggy) version: For the version plat-
form change (buggy), that is, the incremental modification of
the baseline version to migrate from LabVIEW to Matlab,
the test generator augmented the test suite of the baseline
version with 12 additional test cases, resulting to cover-
age of 86% of the branches. The concolic and random
stage produced 9 and 3 additional test cases, respectively.
The coverage-driven stages were not able to improve the
coverage any further. The 3 test cases from the random
stage covered 3 additional branches of the floating point
simulation library used to facilitate the test generator, but
did not result in additional coverage of the original code.

Replicating the test suite from the baseline program
against the two platform change versions did not expose any
problem. Conversely, the 9 additional test cases generated by
the concolic stage of the test generator pinpointed the known
bug. Figure 1 shows the plot of the movement of joint 2
when the test case 25 is executed on the baseline program
and the buggy platform change version, respectively. The
latter version clearly accelerates more than the former one.

At the code level the fault consists of a sequence of
assignments that may double or triplicate the value of
maximum velocity in the presence of quiet joints (same
origin and destination positions in the input). The equality
constraints to execute these assignments are the typical case
in which concolic testing overcomes random testing: the
equality constraints are easy to solve from the symbolic path
conditions, while the probability of randomly generating

Figure 1. Movement of joint 2 when executing test case 25

equal values is infinitesimal. In facts, the 9 additional test
cases from the concolic stage cover all buggy equality
constraints in the platform change version.

The new test suite uncovered another (unknown) bug
in the programs, due to a division by zero that produces
NaN in the trajectory data of quiet joints. The NaN value
interferes with the conditional control structures, such that
the program fails to update the position of the joint according
to the trajectory. The observed outcome is that, if the quiet
joint is not first in the list, its movement is tracked exactly
equal to the joint that precedes it. Figure 2 illustrates this
behavior with reference to test case 25: in both the baseline
version and the platform change version, the trajectory of
the quiet joint is different from the expected trajectory and
equal to the trajectory of the preceding joint (that is, the
one illustrated in Figure 1). This bug has been confirmed
and indicated as very important by VTT experts.

Platform change (fixed) version: For the version plat-
form change (fixed), that is, the version that fixes the bug
introduced in the former Matlab version, the test generator
did not produced any additional test case over the test suite
of the previous (buggy) version. The final coverage is 82%
of the branches of this version.

Replicating the test suite against the fixed platform change
version confirmed the correction of the known bug and
the consistency of the baseline LabVIEW program and its



Figure 2. Movement of joint 3 when executing test case 25

porting to Matlab. The bug in Figure 2 was present in this
version too.

New implementation: For the version new implemen-
tation, that is, the recently proposed re-implementation of
the functionality of the baseline version, the test generator
produced 3 additional test cases over the test suite of
the baseline version, with a total coverage of 83% of the
branches. The test case from the random stage did not result
in additional coverage of the original code.

We replicated the test suite from the baseline program
against the proposed re-implementation of the functionality,
and executed the 3 additional test cases computed by test
suite augmentation. Overall, the test cases highlighted the
expected change of behavior of the new implementation with
respect to the baseline program. The new implementation is
meant to approximate the gradual (rather than immediate)
accelerations of the physical movements. This is evident if
we plot the velocity of the joints, as for example in Figure 3
that relates to test case 11. The test revealed problems of
the new implementation too: First, the new implementation
computes incremental accelerations that always produce
single instant peak velocity, and then slower movements
than physically possible; Second, it does not account for
the maximum deceleration if different from the maximum
acceleration, which is an important practical case. These
problems can be easily spot in Figure 3.

Replicating the available test cases against a new version
is typical regression testing, while we did not observe
any notable behavior related to the test cases specifically
computed with test suite augmentation for this version. We
regard however as a very positive outcome the fact that the
automatically generated test cases can produce informative
(and readily available) data for a new version of the software
that has not been tested in the field yet.

Figure 3. Velocity of joint 2 when executing test case 11

VI. DISCUSSION AND LESSONS LEARNED

Overall, the results of our study support the conclusion
that test generators can be effective in the considered in-
dustrial setting, where they were able to unveil important
bugs of the software under test. The considered subject
programs are part of a safety critical system and have
been extensively used within a prototype deployment of
that system. Nonetheless, the test cases delivered by our
test generator pinpointed unknown robustness issues with
unchecked implicit preconditions and possible floating point
underflows, exposed known and unknown subtle bugs, and
provided valuable feedback on a recently developed new ver-
sion of the software. All test outcomes have been reviewed,
discussed and confirmed with domain experts.

During the study we learned lessons that is useful to share.
Being able to effectively analyze programs that exploit

non-linear and floating point arithmetics was a strong re-
quirement in our study. This likely generalizes to many
other relevant industrial domains. We used a floating point
simulation library to mitigate the limitations of existing SMT
solvers in this respect. Our experience indicates the support
for floating point arithmetics and non-linear computations
as an important milestone in the path to exploiting the full
potential of concolic-based tools in industry.

Another indication that can be drawn out of our study is
that test generators must be able to integrate with manual
oracles, since addressing program crashes or uncaught run-
time exceptions only can be insufficient. Our study provides
evidence that even low level violations, such as floating point
divisions by zero, can result to silent failures.

Integrating with manual oracles is the main reason why
we instructed our test generator to retain only the test cases
that resulted to increase of coverage: We regarded this as an
inexpensive method of controlling the size of the test suites,
while delivering the test cases with good chances of captur-
ing behaviors not yet seen. It is however easy to think of
other, possibly more effective, methods to achieve a similar



goal, and we do not want to claim any superiority of our
method over others. We only remark that industrial users call
for prioritized test suites, and exception/crash counting is not
always the proper way to achieve a successful prioritization.
Test generators must be assessed in this respect as well.

ACKNOWLEDGMENT

This work is partially supported by the European Com-
munity under the call FP7-ICT-2009-5 - project PINCETTE
257647. The authors would like to thank Luca Trovato that
implemented part of the test cases for execution in LabView.

REFERENCES

[1] C. Csallner and Y. Smaragdakis, “JCrasher: An automatic ro-
bustness tester for Java,” Software—Practice and Experience,
vol. 34, no. 11, pp. 1025–1050, Sep. 2004.

[2] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proceedings of the 29th
International Conference on Software Engineering (ICSE
2007). IEEE Computer Society, 2007, pp. 75–84.

[3] P. Godefroid, A. Kieżun, and M. Y. Levin, “Grammar-based
whitebox fuzzing,” in Proceedings of the 2008 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI’08). ACM, 2008, pp. 206–215.

[4] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO:
adaptive random testing for object-oriented software,” in
Proceedings of the 30th International Conference on Software
Engineering (ICSE’08). ACM, 2008, pp. 71–80.

[5] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed
automated random testing,” in Proceedings of the ACM SIG-
PLAN 2005 Conference on Programming Language Design
and Implementation (PLDI 2005), 2005, pp. 213–223.

[6] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic
unit testing engine for C,” in Proceedings of the European
Software Engineering Conference joint with 13th ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE-13), 2005, pp. 263–272.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler, “EXE: automatically generating inputs of death,” in
Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS ’06). ACM, 2006, pp. 322–
335.

[8] S. Anand, C. S. Pǎsǎreanu, and W. Visser, “JPF-SE: A sym-
bolic execution extension to Java Pathfinder,” in International
Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS 2007), Braga, Portugal, March
2007, pp. 134–138.

[9] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs,” in Proceedings of the 8th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI 2008), 2008.

[10] N. Tillmann and J. de Halleux, “Pex — white box test
generation for .NET,” in Proceedings of the 2nd International
Conference on Tests and Proofs (TAP 2008), 2008, pp. 134–
153.

[11] B. Korel, “Automated software test data generation,” IEEE
Transactions on Software Engineering, vol. 16, no. 8, pp. 870
–879, aug 1990.

[12] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating
software test data by evolution,” IEEE Transactions on Soft-
ware Engineering, vol. 27, pp. 1085–1110, December 2001.

[13] P. Tonella, “Evolutionary testing of classes,” in Proceedings
of the 2004 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’04). ACM, 2004, pp.
119–128.

[14] J. Burnim and K. Sen, “Heuristics for scalable dynamic test
generation,” in Proceedings of the 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE
2008), 2008, pp. 443–446.

[15] K. Inkumsah and T. Xie, “Improving structural testing of
object-oriented programs via integrating evolutionary test-
ing and symbolic execution,” in Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), 2008, pp. 297–306.

[16] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte, “Fitness-
guided path exploration in dynamic symbolic execution,” in
Proceedings of the 39th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN 2009),
June-July 2009, pp. 359–368.

[17] K. L. McMillan, “Lazy annotation for program testing and
verification,” in Computer Aided Verification, 22nd Interna-
tional Conference, CAV 2010, Edinburgh, UK, July 15-19,
2010. Proceedings, 2010, pp. 104–118.

[18] M. Baluda, P. Braione, G. Denaro, and M. Pezzè, “Structural
coverage of feasible code,” in Proceedings of the Fifth In-
ternational Workshop on Automation of Software Test (AST
2010), 2010.

[19] R. Majumdar and K. Sen, “Hybrid concolic testing,” in
Proceedings of the 29th International Conference on Software
Engineering (ICSE 2007). IEEE Computer Society, 2007,
pp. 416–426.

[20] K. Lakhotia, P. McMinn, and M. Harman, “Automated test
data generation for coverage: Haven’t we solved this problem
yet?” in Proceedings of the 2009 Testing: Academic and
Industrial Conference - Practice and Research Techniques.
IEEE Computer Society, 2009, pp. 95–104.

[21] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated
whitebox fuzz testing,” in Proceedings of the 16th Annual
Network and Distributed System Security Symposium (NDSS
2008), 2008, pp. 151–166.

[22] C. S. Pǎsǎreanu, N. Rungta, and W. Visser, “Symbolic execu-
tion with mixed concrete-symbolic solving,” in Proceedings
of the 2011 International Symposium on Software Testing and
Analysis (ISSTA 2011), 2011, pp. 35–44.



[23] Y. Shimomura, “The present status and future prospects of the
ITER project,” Journal of Nuclear Materials, vol. 329-333,
no. 1, pp. 5–11, 2004.

[24] M. Keilhacker, “JET deuterium-tritium results and their im-
plications,” in 17th IEEE/NPSS Symposium on Fusion Engi-
neering, vol. 2, 1997, pp. 3–9.

[25] A. Muhammad, S. Esque, M. Tolonen, J. Mattila, P. Niemi-
nen, O. Linna, and M. Vilenius, “Water hydraulic teleopera-
tion system for ITER,” in Proceedings of the 10th Scandina-
vian International Conference on Fluid Power, vol. 3, 2007,
pp. 263–276.

[26] T. Honda, Y. Hattori, C. Holloway, E. Martin, Y. Matsumoto,
T. Matsunobu, T. Suzuki, A. Tesini, V. Baulo, R. Haange,

J. Palmer, and K. Shibanuma, “Remote handling systems for
ITER,” Fusion Engineering and Design, vol. 63-64, pp. 507–
518, 2002.

[27] M. Baluda, P. Braione, G. Denaro, and M. Pezzè, “Enhanc-
ing structural software coverage by incrementally computing
branch executability,” Software Quality Journal, vol. 19, no. 4,
pp. 725–751, 2011.

[28] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J. Harrold, “Test-suite augmentation for evolving soft-
ware,” in Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE’08),
2008, pp. 218–227.


